Skip to content

API Reference

Zarr-based image with NIfTI compatibility using NgffImage internally.

This class provides chainable operations on OME-Zarr data while maintaining compatibility with NIfTI workflows. It uses NgffImage objects internally for better multiscale support and metadata preservation.

Attributes:

  • ngff_image (NgffImage) –

    The internal NgffImage object containing data and metadata.

  • axes_order (str) –

    The order of the axes for NIfTI compatibility ('ZYX' or 'XYZ').

  • xyz_orientation (str) –

    The anatomical orientation string in XYZ axes order (e.g., 'RAS', 'LPI').

Constructor with backward compatibility for old signature.

Source code in zarrnii/core.py
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
def __init__(
    self,
    darr=None,
    affine=None,
    axes_order="ZYX",
    orientation="RAS",
    xyz_orientation=None,
    ngff_image=None,
    _omero=None,
    **kwargs,
):
    """
    Constructor with backward compatibility for old signature.
    """
    # Handle backwards compatibility: if xyz_orientation is provided, use it
    # Otherwise, use orientation for backwards compatibility
    final_orientation = (
        xyz_orientation if xyz_orientation is not None else orientation
    )

    if ngff_image is not None:
        # New signature
        object.__setattr__(self, "ngff_image", ngff_image)
        object.__setattr__(self, "axes_order", axes_order)
        object.__setattr__(self, "xyz_orientation", final_orientation)
        object.__setattr__(self, "_omero", _omero)
    elif darr is not None:
        # Legacy signature - delegate to from_darr
        instance = self.from_darr(
            darr=darr,
            affine=affine,
            axes_order=axes_order,
            orientation=final_orientation,
            **kwargs,
        )
        object.__setattr__(self, "ngff_image", instance.ngff_image)
        object.__setattr__(self, "axes_order", instance.axes_order)
        object.__setattr__(self, "xyz_orientation", instance.xyz_orientation)
        object.__setattr__(self, "_omero", instance._omero)
    else:
        raise ValueError("Must provide either ngff_image or darr")

Attributes

zarrnii.ZarrNii.data property writable

Access the image data (dask array).

zarrnii.ZarrNii.darr property writable

Legacy property name for image data.

zarrnii.ZarrNii.shape property

Shape of the image data.

zarrnii.ZarrNii.dims property

Dimension names.

zarrnii.ZarrNii.scale property

Scale information from NgffImage.

zarrnii.ZarrNii.translation property

Translation information from NgffImage.

zarrnii.ZarrNii.name property

Image name from NgffImage.

zarrnii.ZarrNii.orientation property writable

Legacy property for backward compatibility.

Returns the xyz_orientation attribute to maintain backward compatibility with code that expects the 'orientation' property.

Returns:

  • str ( str ) –

    The anatomical orientation string in XYZ axes order

zarrnii.ZarrNii.affine property

Affine transformation matrix derived from NgffImage scale and translation.

Returns:

  • AffineTransform ( AffineTransform ) –

    4x4 affine transformation matrix in axes order of self.

zarrnii.ZarrNii.axes property

Axes metadata - derived from NgffImage for compatibility.

zarrnii.ZarrNii.coordinate_transformations property

Coordinate transformations - derived from NgffImage scale/translation.

zarrnii.ZarrNii.omero property

Omero metadata object.

Functions

zarrnii.ZarrNii.get_affine_transform(axes_order=None)

Get AffineTransform object from NgffImage metadata.

Parameters:

  • axes_order (str, default: None ) –

    Spatial axes order, defaults to self.axes_order

Returns:

Source code in zarrnii/core.py
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
def get_affine_transform(self, axes_order: str = None) -> AffineTransform:
    """
    Get AffineTransform object from NgffImage metadata.

    Args:
        axes_order: Spatial axes order, defaults to self.axes_order

    Returns:
        AffineTransform object
    """
    matrix = self.get_affine_matrix(axes_order)
    return AffineTransform.from_array(matrix)

zarrnii.ZarrNii.from_ngff_image(ngff_image, axes_order='ZYX', xyz_orientation='RAS', omero=None) classmethod

Create ZarrNii from an existing NgffImage.

Parameters:

  • ngff_image (NgffImage) –

    NgffImage to wrap

  • axes_order (str, default: 'ZYX' ) –

    Spatial axes order for NIfTI compatibility

  • xyz_orientation (str, default: 'RAS' ) –

    Anatomical orientation string in XYZ axes order

  • omero (Optional[object], default: None ) –

    Optional omero metadata object

Returns:

  • 'ZarrNii'

    ZarrNii instance

Source code in zarrnii/core.py
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
@classmethod
def from_ngff_image(
    cls,
    ngff_image: nz.NgffImage,
    axes_order: str = "ZYX",
    xyz_orientation: str = "RAS",
    omero: Optional[object] = None,
) -> "ZarrNii":
    """
    Create ZarrNii from an existing NgffImage.

    Args:
        ngff_image: NgffImage to wrap
        axes_order: Spatial axes order for NIfTI compatibility
        xyz_orientation: Anatomical orientation string in XYZ axes order
        omero: Optional omero metadata object

    Returns:
        ZarrNii instance
    """
    return cls(
        ngff_image=ngff_image,
        axes_order=axes_order,
        xyz_orientation=xyz_orientation,
        _omero=omero,
    )

zarrnii.ZarrNii.from_darr(darr, affine=None, axes_order='ZYX', orientation='RAS', spacing=(1.0, 1.0, 1.0), origin=(0.0, 0.0, 0.0), name='image', omero=None, **kwargs) classmethod

Create ZarrNii from dask array (legacy compatibility constructor).

Parameters:

  • darr (Array) –

    Dask array containing image data

  • affine (Optional[AffineTransform], default: None ) –

    Optional affine transformation

  • axes_order (str, default: 'ZYX' ) –

    Spatial axes order

  • orientation (str, default: 'RAS' ) –

    Anatomical orientation string

  • spacing (Tuple[float, float, float], default: (1.0, 1.0, 1.0) ) –

    Voxel spacing (used if no affine provided)

  • origin (Tuple[float, float, float], default: (0.0, 0.0, 0.0) ) –

    Origin offset (used if no affine provided)

  • name (str, default: 'image' ) –

    Image name

  • omero (Optional[object], default: None ) –

    Optional omero metadata

Returns:

  • 'ZarrNii'

    ZarrNii instance

Source code in zarrnii/core.py
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
@classmethod
def from_darr(
    cls,
    darr: da.Array,
    affine: Optional[AffineTransform] = None,
    axes_order: str = "ZYX",
    orientation: str = "RAS",
    spacing: Tuple[float, float, float] = (1.0, 1.0, 1.0),
    origin: Tuple[float, float, float] = (0.0, 0.0, 0.0),
    name: str = "image",
    omero: Optional[object] = None,
    **kwargs,
) -> "ZarrNii":
    """
    Create ZarrNii from dask array (legacy compatibility constructor).

    Args:
        darr: Dask array containing image data
        affine: Optional affine transformation
        axes_order: Spatial axes order
        orientation: Anatomical orientation string
        spacing: Voxel spacing (used if no affine provided)
        origin: Origin offset (used if no affine provided)
        name: Image name
        omero: Optional omero metadata

    Returns:
        ZarrNii instance
    """
    # Create scale and translation from affine if provided
    if affine is not None:
        # Extract scale and translation from affine matrix
        affine_matrix = affine.matrix
        if axes_order == "ZYX":
            scale = {
                "z": affine_matrix[0, 0],
                "y": affine_matrix[1, 1],
                "x": affine_matrix[2, 2],
            }
            translation = {
                "z": affine_matrix[0, 3],
                "y": affine_matrix[1, 3],
                "x": affine_matrix[2, 3],
            }
        else:  # XYZ
            scale = {
                "x": affine_matrix[0, 0],
                "y": affine_matrix[1, 1],
                "z": affine_matrix[2, 2],
            }
            translation = {
                "x": affine_matrix[0, 3],
                "y": affine_matrix[1, 3],
                "z": affine_matrix[2, 3],
            }
    else:
        # Use spacing and origin
        if axes_order == "ZYX":
            scale = {"z": spacing[0], "y": spacing[1], "x": spacing[2]}
            translation = {"z": origin[0], "y": origin[1], "x": origin[2]}
        else:  # XYZ
            scale = {"x": spacing[0], "y": spacing[1], "z": spacing[2]}
            translation = {"x": origin[0], "y": origin[1], "z": origin[2]}

    # Create dimensions based on data shape after dimension adjustments
    final_ndim = len(darr.shape)
    if final_ndim == 4:
        # 4D: (c, z, y, x) or (c, x, y, z) - standard case
        dims = ["c"] + list(axes_order.lower())
    elif final_ndim == 5:
        # 5D: (t, c, z, y, x) or (t, c, x, y, z) - time dimension included
        dims = ["t", "c"] + list(axes_order.lower())
    else:
        # Fallback for other cases
        dims = ["c"] + list(axes_order.lower())

    # Create NgffImage
    ngff_image = nz.NgffImage(
        data=darr, dims=dims, scale=scale, translation=translation, name=name
    )

    return cls(
        ngff_image=ngff_image,
        axes_order=axes_order,
        xyz_orientation=orientation,
        _omero=omero,
    )

zarrnii.ZarrNii.from_ome_zarr(store_or_path, level=0, channels=None, channel_labels=None, timepoints=None, storage_options=None, axes_order='ZYX', orientation=None, downsample_near_isotropic=False, chunks='auto', rechunk=False) classmethod

Load ZarrNii from OME-Zarr store with flexible options.

Creates a ZarrNii instance from an OME-Zarr store, supporting multiscale pyramids, channel/timepoint selection, and various storage backends. Automatically handles metadata extraction and format conversion.

Parameters:

  • store_or_path (Union[str, Any]) –

    Store or path to OME-Zarr file. Supports: - Local file paths - Remote URLs (s3://, http://, etc.) - ZIP files (.zip extension) - Zarr store objects

  • level (int, default: 0 ) –

    Pyramid level to load (0 = highest resolution). If level exceeds available levels, applies lazy downsampling

  • channels (Optional[List[int]], default: None ) –

    List of channel indices to load (0-based). Mutually exclusive with channel_labels

  • channel_labels (Optional[List[str]], default: None ) –

    List of channel names to load by label. Requires OMERO metadata. Mutually exclusive with channels

  • timepoints (Optional[List[int]], default: None ) –

    List of timepoint indices to load (0-based). If None, loads all available timepoints

  • storage_options (Optional[Dict[str, Any]], default: None ) –

    Additional options for zarr storage backend (e.g., credentials for cloud storage)

  • axes_order (str, default: 'ZYX' ) –

    Spatial axis order for NIfTI compatibility. Either "ZYX" or "XYZ"

  • orientation (Optional[str], default: None ) –

    Default anatomical orientation if not in metadata. Standard orientations like "RAS", "LPI", etc. This is always interpreted in XYZ axes order for consistency. This setting will override any orientation defined in the OME zarr metadata

  • downsample_near_isotropic (bool, default: False ) –

    If True, automatically downsample dimensions with smaller voxel sizes to achieve near-isotropic resolution

  • chunks (tuple[int, Ellipsis] | Literal['auto'], default: 'auto' ) –

    chunking strategy, or explicit chunk sizes to use if not automatic

  • rechunk (bool, default: False ) –

    If True, rechunks the dataset after lazy loading, based on the chunks parameter

Returns:

  • 'ZarrNii'

    ZarrNii instance with loaded data and metadata

Raises:

  • ValueError

    If both channels and channel_labels are specified, or if invalid level/indices are provided

  • FileNotFoundError

    If store_or_path does not exist

  • KeyError

    If specified channel labels are not found

  • IOError

    If unable to read from the storage backend

Examples:

>>> # Load full resolution data
>>> znii = ZarrNii.from_ome_zarr("/path/to/data.zarr")
>>> # Load specific channels and pyramid level
>>> znii = ZarrNii.from_ome_zarr(
...     "/path/to/data.zarr",
...     level=1,
...     channels=[0, 2],
...     orientation="LPI"
... )
>>> # Load from cloud storage
>>> znii = ZarrNii.from_ome_zarr(
...     "s3://bucket/data.zarr",
...     storage_options={"key": "access_key", "secret": "secret"}
... )
Notes

Orientation Metadata Backwards Compatibility:

This method implements backwards compatibility for orientation metadata:

  1. Override: Setting the orientation here will override any orientation defined in the OME Zarr metadata.

  2. Zarr Metadata: Checks for 'xyz_orientation' first (new format), then falls back to 'orientation' (legacy format)

  3. Legacy Fallback: When only legacy 'orientation' is found, the orientation string is automatically reversed to convert from ZYX-based encoding (legacy) to XYZ-based encoding (current standard)

  4. Default Fallback: If no orientation metadata is found, uses RAS orientation as the default.

Examples of the conversion: - Legacy 'orientation'='SAR' (ZYX) → 'xyz_orientation'='RAS' (XYZ) - Legacy 'orientation'='IPL' (ZYX) → 'xyz_orientation'='LPI' (XYZ)

This ensures consistent orientation handling while maintaining backwards compatibility with existing OME-Zarr files that use the legacy format.

Source code in zarrnii/core.py
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
@classmethod
def from_ome_zarr(
    cls,
    store_or_path: Union[str, Any],
    level: int = 0,
    channels: Optional[List[int]] = None,
    channel_labels: Optional[List[str]] = None,
    timepoints: Optional[List[int]] = None,
    storage_options: Optional[Dict[str, Any]] = None,
    axes_order: str = "ZYX",
    orientation: Optional[str] = None,
    downsample_near_isotropic: bool = False,
    chunks: tuple[int, Ellipsis] | Literal["auto"] = "auto",
    rechunk: bool = False,
) -> "ZarrNii":
    """Load ZarrNii from OME-Zarr store with flexible options.

    Creates a ZarrNii instance from an OME-Zarr store, supporting multiscale
    pyramids, channel/timepoint selection, and various storage backends.
    Automatically handles metadata extraction and format conversion.

    Args:
        store_or_path: Store or path to OME-Zarr file. Supports:
            - Local file paths
            - Remote URLs (s3://, http://, etc.)
            - ZIP files (.zip extension)
            - Zarr store objects
        level: Pyramid level to load (0 = highest resolution). If level
            exceeds available levels, applies lazy downsampling
        channels: List of channel indices to load (0-based). Mutually
            exclusive with channel_labels
        channel_labels: List of channel names to load by label. Requires
            OMERO metadata. Mutually exclusive with channels
        timepoints: List of timepoint indices to load (0-based). If None,
            loads all available timepoints
        storage_options: Additional options for zarr storage backend
            (e.g., credentials for cloud storage)
        axes_order: Spatial axis order for NIfTI compatibility.
            Either "ZYX" or "XYZ"
        orientation: Default anatomical orientation if not in metadata.
            Standard orientations like "RAS", "LPI", etc. This is always
            interpreted in XYZ axes order for consistency. This setting will override
            any orientation defined in the OME zarr metadata
        downsample_near_isotropic: If True, automatically downsample
            dimensions with smaller voxel sizes to achieve near-isotropic
            resolution
        chunks: chunking strategy, or explicit chunk sizes to use if not automatic
        rechunk: If True, rechunks the dataset after lazy loading, based
            on the chunks parameter

    Returns:
        ZarrNii instance with loaded data and metadata

    Raises:
        ValueError: If both channels and channel_labels are specified,
            or if invalid level/indices are provided
        FileNotFoundError: If store_or_path does not exist
        KeyError: If specified channel labels are not found
        IOError: If unable to read from the storage backend

    Examples:
        >>> # Load full resolution data
        >>> znii = ZarrNii.from_ome_zarr("/path/to/data.zarr")

        >>> # Load specific channels and pyramid level
        >>> znii = ZarrNii.from_ome_zarr(
        ...     "/path/to/data.zarr",
        ...     level=1,
        ...     channels=[0, 2],
        ...     orientation="LPI"
        ... )

        >>> # Load from cloud storage
        >>> znii = ZarrNii.from_ome_zarr(
        ...     "s3://bucket/data.zarr",
        ...     storage_options={"key": "access_key", "secret": "secret"}
        ... )

    Notes:
        **Orientation Metadata Backwards Compatibility:**

        This method implements backwards compatibility for orientation metadata:

        1. **Override**: Setting the orientation here will override
           any orientation defined in the OME Zarr metadata.

        2. **Zarr Metadata**: Checks for 'xyz_orientation' first (new format),
           then falls back to 'orientation' (legacy format)

        3. **Legacy Fallback**: When only legacy 'orientation' is found, the
           orientation string is automatically reversed to convert from ZYX-based
           encoding (legacy) to XYZ-based encoding (current standard)

        4. **Default Fallback**: If no orientation metadata is found, uses RAS
           orientation as the default.

        Examples of the conversion:
        - Legacy 'orientation'='SAR' (ZYX) → 'xyz_orientation'='RAS' (XYZ)
        - Legacy 'orientation'='IPL' (ZYX) → 'xyz_orientation'='LPI' (XYZ)

        This ensures consistent orientation handling while maintaining backwards
        compatibility with existing OME-Zarr files that use the legacy format.
    """
    # Validate channel and timepoint selection arguments
    if channels is not None and channel_labels is not None:
        raise ValueError("Cannot specify both 'channels' and 'channel_labels'")

    # Load the multiscales object
    try:
        if isinstance(store_or_path, str):
            # Handle ZIP files by creating a ZipStore
            if store_or_path.endswith(".zip"):
                import zarr

                store = zarr.storage.ZipStore(store_or_path, mode="r")
                multiscales = nz.from_ngff_zarr(
                    store, storage_options=storage_options or {}
                )
                # Note: We'll close the store after extracting metadata
            else:
                multiscales = nz.from_ngff_zarr(
                    store_or_path, storage_options=storage_options or {}
                )
        else:
            multiscales = nz.from_ngff_zarr(store_or_path)
    except Exception as e:
        # Fallback for older zarr/ngff_zarr versions
        if isinstance(store_or_path, str):
            if store_or_path.endswith(".zip"):
                import zarr

                store = zarr.storage.ZipStore(store_or_path, mode="r")
                multiscales = nz.from_ngff_zarr(store)
            else:
                store = fsspec.get_mapper(store_or_path, **storage_options or {})
                multiscales = nz.from_ngff_zarr(store)
        else:
            store = store_or_path
            multiscales = nz.from_ngff_zarr(store)

    # Extract omero metadata if available
    omero_metadata = None
    try:
        import zarr

        if isinstance(store_or_path, str):
            if store_or_path.endswith(".zip"):
                zip_store = zarr.storage.ZipStore(store_or_path, mode="r")
                group = zarr.open_group(zip_store, mode="r")
                # Close zip store after getting group
                zip_store.close()
            else:
                group = zarr.open_group(store_or_path, mode="r")

        else:
            group = zarr.open_group(store_or_path, mode="r")

        if "omero" in group.attrs:
            omero_dict = group.attrs["omero"]

            # Create a simple object to hold omero metadata
            class OmeroMetadata:
                def __init__(self, omero_dict):
                    self.channels = []
                    if "channels" in omero_dict:
                        for ch_dict in omero_dict["channels"]:
                            # Create channel objects
                            class ChannelMetadata:
                                def __init__(self, ch_dict):
                                    self.label = ch_dict.get("label", "")
                                    self.color = ch_dict.get("color", "")
                                    if "window" in ch_dict:

                                        class WindowMetadata:
                                            def __init__(self, win_dict):
                                                self.min = win_dict.get("min", 0.0)
                                                self.max = win_dict.get(
                                                    "max", 65535.0
                                                )
                                                self.start = win_dict.get(
                                                    "start", 0.0
                                                )
                                                self.end = win_dict.get(
                                                    "end", 65535.0
                                                )

                                        self.window = WindowMetadata(
                                            ch_dict["window"]
                                        )
                                    else:
                                        self.window = None

                            self.channels.append(ChannelMetadata(ch_dict))

            omero_metadata = OmeroMetadata(omero_dict)
    except Exception:
        # If we can't load omero metadata, that's okay
        pass

    # Read orientation metadata with backwards compatibility support
    # Priority: xyz_orientation (new) > orientation (legacy, with reversal)
    try:
        import zarr

        if orientation is None:

            if isinstance(store_or_path, str):
                if store_or_path.endswith(".zip"):
                    zip_store = zarr.storage.ZipStore(store_or_path, mode="r")
                    group = zarr.open_group(zip_store, mode="r")
                    # Check for new xyz_orientation first, then fallback to legacy orientation
                    if "xyz_orientation" in group.attrs:
                        orientation = group.attrs["xyz_orientation"]
                    elif "orientation" in group.attrs:
                        # Legacy orientation is ZYX-based, reverse it to get XYZ-based orientation
                        legacy_orientation = group.attrs["orientation"]
                        orientation = reverse_orientation_string(legacy_orientation)
                    # If neither found, use the provided default orientation
                    zip_store.close()
                else:
                    group = zarr.open_group(store_or_path, mode="r")
                    # Check for new xyz_orientation first, then fallback to legacy orientation
                    if "xyz_orientation" in group.attrs:
                        orientation = group.attrs["xyz_orientation"]
                    elif "orientation" in group.attrs:
                        # Legacy orientation is ZYX-based, reverse it to get XYZ-based orientation
                        legacy_orientation = group.attrs["orientation"]
                        orientation = reverse_orientation_string(legacy_orientation)
                    # If neither found, use the provided default orientation
            else:
                group = zarr.open_group(store_or_path, mode="r")
                # Check for new xyz_orientation first, then fallback to legacy orientation
                if "xyz_orientation" in group.attrs:
                    orientation = group.attrs["xyz_orientation"]
                elif "orientation" in group.attrs:
                    # Legacy orientation is ZYX-based, reverse it to get XYZ-based orientation
                    legacy_orientation = group.attrs["orientation"]
                    orientation = reverse_orientation_string(legacy_orientation)
                # If neither found, use the provided default orientation

    except Exception:
        # If we can't read orientation metadata, use the provided default
        pass

    # If orientation is still None, use the fallback default
    if orientation is None:
        orientation = "RAS"
    # Determine the available pyramid levels and handle lazy downsampling
    max_level = len(multiscales.images) - 1
    actual_level = min(level, max_level)
    do_downsample = level > max_level

    # Get the highest available level
    ngff_image = multiscales.images[actual_level]

    # Handle channel and timepoint selection and filter omero metadata accordingly
    filtered_omero = omero_metadata
    if channels is not None or channel_labels is not None or timepoints is not None:
        ngff_image, filtered_omero = _select_dimensions_from_image_with_omero(
            ngff_image,
            multiscales,
            channels,
            channel_labels,
            timepoints,
            omero_metadata,
        )

    # Create ZarrNii instance with xyz_orientation
    znimg = cls(
        ngff_image=ngff_image,
        axes_order=axes_order,
        xyz_orientation=orientation,
        _omero=filtered_omero,
    )

    # Apply lazy downsampling if needed
    if do_downsample:
        level_ds = level - max_level
        downsample_factor = 2**level_ds

        # Get spatial dims based on axes order
        spatial_dims = ["z", "y", "x"] if axes_order == "ZYX" else ["x", "y", "z"]

        # Apply downsampling using the existing method
        znimg = znimg.downsample(
            factors=downsample_factor, spatial_dims=spatial_dims
        )

    # Apply near-isotropic downsampling if requested
    if downsample_near_isotropic:
        znimg = _apply_near_isotropic_downsampling(znimg, axes_order)

    if rechunk:
        znimg.data = znimg.data.rechunk(chunks)

    return znimg

zarrnii.ZarrNii.from_nifti(path, chunks='auto', axes_order='XYZ', name=None, as_ref=False, zooms=None) classmethod

Load ZarrNii from NIfTI file with flexible loading options.

Creates a ZarrNii instance from a NIfTI file, automatically converting the data to dask arrays and extracting spatial transformation information. Supports both full data loading and reference-only loading for memory efficiency.

Parameters:

  • path (Union[str, bytes]) –

    File path to NIfTI file (.nii, .nii.gz, .img/.hdr)

  • chunks (Union[str, Tuple[int, ...]], default: 'auto' ) –

    Dask array chunking strategy. Can be: - "auto": Automatic chunking based on file size - Tuple of ints: Manual chunk sizes for each dimension - Dict mapping axis to chunk size

  • axes_order (str, default: 'XYZ' ) –

    Spatial axis ordering convention. Either: - "XYZ": X=left-right, Y=anterior-posterior, Z=inferior-superior - "ZYX": Z=inferior-superior, Y=anterior-posterior, X=left-right

  • name (Optional[str], default: None ) –

    Optional name for the resulting NgffImage. If None, uses filename without extension

  • as_ref (bool, default: False ) –

    If True, creates empty dask array with correct shape/metadata without loading actual image data (memory efficient for templates)

  • zooms (Optional[Tuple[float, float, float]], default: None ) –

    Target voxel spacing as (x, y, z) in mm. Only valid when as_ref=True. Adjusts shape and affine accordingly

Returns:

  • 'ZarrNii'

    ZarrNii instance containing NIfTI data and spatial metadata

Raises:

  • ValueError

    If zooms specified with as_ref=False, or invalid axes_order

  • FileNotFoundError

    If NIfTI file does not exist

  • OSError

    If unable to read NIfTI file

  • ImageFileError

    If file is not valid NIfTI

Examples:

>>> # Load full NIfTI data
>>> znii = ZarrNii.from_nifti("/path/to/brain.nii.gz")
>>> # Load with custom chunking and axis order
>>> znii = ZarrNii.from_nifti(
...     "/path/to/data.nii",
...     chunks=(64, 64, 64),
...     axes_order="ZYX"
... )
>>> # Create reference with target resolution
>>> znii_ref = ZarrNii.from_nifti(
...     "/path/to/template.nii.gz",
...     as_ref=True,
...     zooms=(2.0, 2.0, 2.0)
... )
Notes

The method automatically handles NIfTI orientation codes and converts them to the specified axes_order for consistency with OME-Zarr workflows.

Source code in zarrnii/core.py
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
@classmethod
def from_nifti(
    cls,
    path: Union[str, bytes],
    chunks: Union[str, Tuple[int, ...]] = "auto",
    axes_order: str = "XYZ",
    name: Optional[str] = None,
    as_ref: bool = False,
    zooms: Optional[Tuple[float, float, float]] = None,
) -> "ZarrNii":
    """Load ZarrNii from NIfTI file with flexible loading options.

    Creates a ZarrNii instance from a NIfTI file, automatically converting
    the data to dask arrays and extracting spatial transformation information.
    Supports both full data loading and reference-only loading for memory
    efficiency.

    Args:
        path: File path to NIfTI file (.nii, .nii.gz, .img/.hdr)
        chunks: Dask array chunking strategy. Can be:
            - "auto": Automatic chunking based on file size
            - Tuple of ints: Manual chunk sizes for each dimension
            - Dict mapping axis to chunk size
        axes_order: Spatial axis ordering convention. Either:
            - "XYZ": X=left-right, Y=anterior-posterior, Z=inferior-superior
            - "ZYX": Z=inferior-superior, Y=anterior-posterior, X=left-right
        name: Optional name for the resulting NgffImage. If None,
            uses filename without extension
        as_ref: If True, creates empty dask array with correct shape/metadata
            without loading actual image data (memory efficient for templates)
        zooms: Target voxel spacing as (x, y, z) in mm. Only valid when
            as_ref=True. Adjusts shape and affine accordingly

    Returns:
        ZarrNii instance containing NIfTI data and spatial metadata

    Raises:
        ValueError: If zooms specified with as_ref=False, or invalid axes_order
        FileNotFoundError: If NIfTI file does not exist
        OSError: If unable to read NIfTI file
        nibabel.filebasedimages.ImageFileError: If file is not valid NIfTI

    Examples:
        >>> # Load full NIfTI data
        >>> znii = ZarrNii.from_nifti("/path/to/brain.nii.gz")

        >>> # Load with custom chunking and axis order
        >>> znii = ZarrNii.from_nifti(
        ...     "/path/to/data.nii",
        ...     chunks=(64, 64, 64),
        ...     axes_order="ZYX"
        ... )

        >>> # Create reference with target resolution
        >>> znii_ref = ZarrNii.from_nifti(
        ...     "/path/to/template.nii.gz",
        ...     as_ref=True,
        ...     zooms=(2.0, 2.0, 2.0)
        ... )

    Notes:
        The method automatically handles NIfTI orientation codes and converts
        them to the specified axes_order for consistency with OME-Zarr workflows.
    """
    if not as_ref and zooms is not None:
        raise ValueError("`zooms` can only be used when `as_ref=True`.")

    # Load NIfTI file
    nifti_img = nib.load(path)
    shape = nifti_img.header.get_data_shape()
    affine_matrix = nifti_img.affine.copy()

    # infer orientation from the affine
    orientation = _affine_to_orientation(affine_matrix)

    # Adjust shape and affine if zooms are provided
    if zooms is not None:
        in_zooms = np.sqrt(
            (affine_matrix[:3, :3] ** 2).sum(axis=0)
        )  # Current voxel spacing
        scaling_factor = in_zooms / zooms
        new_shape = [
            int(np.floor(shape[0] * scaling_factor[2])),  # Z
            int(np.floor(shape[1] * scaling_factor[1])),  # Y
            int(np.floor(shape[2] * scaling_factor[0])),  # X
        ]
        np.fill_diagonal(affine_matrix[:3, :3], zooms)
    else:
        new_shape = shape

    if as_ref:
        # Create an empty dask array with the adjusted shape
        darr = da.empty((1, *new_shape), chunks=chunks, dtype="float32")
    else:
        # Load the NIfTI data and convert to a dask array
        array = nifti_img.get_fdata()
        darr = da.from_array(array, chunks=chunks)

    # Add channel and time dimensions if not present
    original_ndim = len(darr.shape)

    if original_ndim == 3:
        # 3D data: add channel dimension -> (c, z, y, x) or (c, x, y, z)
        darr = darr[np.newaxis, ...]
    elif original_ndim == 4:
        # 4D data: could be (c, z, y, x) or (t, z, y, x) - assume channel by default
        # User can specify if it's time by using appropriate axes_order
        pass  # Keep as is - 4D is already handled
    elif original_ndim == 5:
        # 5D data: assume (t, z, y, x, c) and handle appropriately
        pass  # Keep as is - 5D is already the target format
    else:
        # For 1D, 2D, or >5D data, add channel dimension and let user handle
        darr = darr[np.newaxis, ...]

    # Create dimensions based on data shape after dimension adjustments
    final_ndim = len(darr.shape)
    if final_ndim == 4:
        # 4D: (c, z, y, x) or (c, x, y, z) - standard case
        dims = ["c"] + list(axes_order.lower())
    elif final_ndim == 5:
        # 5D: (t, c, z, y, x) or (t, c, x, y, z) - time dimension included
        dims = ["t", "c"] + list(axes_order.lower())
    else:
        # Fallback for other cases
        dims = ["c"] + list(axes_order.lower())

    # Extract scale and translation from affine
    scale = {}
    translation = {}
    spatial_dims = ["z", "y", "x"] if axes_order == "ZYX" else ["x", "y", "z"]

    for i, dim in enumerate(spatial_dims):
        scale[dim] = np.sqrt((affine_matrix[i, :3] ** 2).sum())
        translation[dim] = affine_matrix[i, 3]

    # Create NgffImage
    if name is None:
        name = f"nifti_image_{path}"

    ngff_image = nz.NgffImage(
        data=darr, dims=dims, scale=scale, translation=translation, name=name
    )

    return cls(
        ngff_image=ngff_image, axes_order=axes_order, xyz_orientation=orientation
    )

zarrnii.ZarrNii.crop(bbox_min, bbox_max=None, spatial_dims=None, physical_coords=False)

Extract a spatial region or multiple regions from the image.

Crops the image to the specified bounding box coordinates, preserving all metadata and non-spatial dimensions (channels, time). The cropping is performed in voxel coordinates by default, or physical coordinates if specified. Can crop a single region or multiple regions at once.

Parameters:

  • bbox_min (Union[Tuple[float, ...], List[Tuple[Tuple[float, ...], Tuple[float, ...]]]]) –

    Either: - Minimum corner coordinates of bounding box as tuple (when bbox_max is provided). Length should match number of spatial dimensions (x, y, z order) - List of (bbox_min, bbox_max) tuples for batch cropping (when bbox_max is None)

  • bbox_max (Optional[Tuple[float, ...]], default: None ) –

    Maximum corner coordinates of bounding box as tuple. Length should match number of spatial dimensions (x, y, z order). Should be None when bbox_min is a list of bounding boxes.

  • spatial_dims (Optional[List[str]], default: None ) –

    Names of spatial dimensions to crop. If None, automatically derived from axes_order ("z","y","x" for ZYX or "x","y","z" for XYZ)

  • physical_coords (bool, default: False ) –

    If True, bbox_min and bbox_max are in physical/world coordinates (mm). If False, they are in voxel coordinates. Default is False.

Returns:

  • Union['ZarrNii', List['ZarrNii']]

    New ZarrNii instance with cropped data (single crop) or list of

  • Union['ZarrNii', List['ZarrNii']]

    ZarrNii instances (batch crop) with updated spatial metadata

Raises:

  • ValueError

    If bbox coordinates are invalid or out of bounds, or if both list and bbox_max are provided

  • IndexError

    If bbox dimensions don't match spatial dimensions

Examples:

>>> # Crop 3D region (voxel coordinates)
>>> cropped = znii.crop((10, 20, 30), (110, 120, 130))
>>> # Crop with physical coordinates
>>> cropped = znii.crop((10.5, 20.5, 30.5), (110.5, 120.5, 130.5),
...                      physical_coords=True)
>>> # Crop with explicit spatial dimensions
>>> cropped = znii.crop(
...     (50, 60, 70), (150, 160, 170),
...     spatial_dims=["x", "y", "z"]
... )
>>> # Batch crop multiple regions
>>> bboxes = [
...     ((10, 20, 30), (60, 70, 80)),
...     ((100, 110, 120), (150, 160, 170))
... ]
>>> cropped_list = znii.crop(bboxes, physical_coords=True)
Notes
  • Coordinates are in voxel space (0-based indexing) by default
  • Physical coordinates are in RAS orientation (Right-Anterior-Superior)
  • The cropped region includes bbox_min but excludes bbox_max
  • All non-spatial dimensions (channels, time) are preserved
  • Spatial transformations are automatically updated
  • When batch cropping, all patches share the same spatial_dims and physical_coords settings
Source code in zarrnii/core.py
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
def crop(
    self,
    bbox_min: Union[
        Tuple[float, ...], List[Tuple[Tuple[float, ...], Tuple[float, ...]]]
    ],
    bbox_max: Optional[Tuple[float, ...]] = None,
    spatial_dims: Optional[List[str]] = None,
    physical_coords: bool = False,
) -> Union["ZarrNii", List["ZarrNii"]]:
    """Extract a spatial region or multiple regions from the image.

    Crops the image to the specified bounding box coordinates, preserving
    all metadata and non-spatial dimensions (channels, time). The cropping
    is performed in voxel coordinates by default, or physical coordinates
    if specified. Can crop a single region or multiple regions at once.

    Args:
        bbox_min: Either:
            - Minimum corner coordinates of bounding box as tuple
              (when bbox_max is provided). Length should match number of
              spatial dimensions (x, y, z order)
            - List of (bbox_min, bbox_max) tuples for batch cropping
              (when bbox_max is None)
        bbox_max: Maximum corner coordinates of bounding box as tuple.
            Length should match number of spatial dimensions (x, y, z order).
            Should be None when bbox_min is a list of bounding boxes.
        spatial_dims: Names of spatial dimensions to crop. If None,
            automatically derived from axes_order ("z","y","x" for ZYX
            or "x","y","z" for XYZ)
        physical_coords: If True, bbox_min and bbox_max are in physical/world
            coordinates (mm). If False, they are in voxel coordinates.
            Default is False.

    Returns:
        New ZarrNii instance with cropped data (single crop) or list of
        ZarrNii instances (batch crop) with updated spatial metadata

    Raises:
        ValueError: If bbox coordinates are invalid or out of bounds, or
            if both list and bbox_max are provided
        IndexError: If bbox dimensions don't match spatial dimensions

    Examples:
        >>> # Crop 3D region (voxel coordinates)
        >>> cropped = znii.crop((10, 20, 30), (110, 120, 130))

        >>> # Crop with physical coordinates
        >>> cropped = znii.crop((10.5, 20.5, 30.5), (110.5, 120.5, 130.5),
        ...                      physical_coords=True)

        >>> # Crop with explicit spatial dimensions
        >>> cropped = znii.crop(
        ...     (50, 60, 70), (150, 160, 170),
        ...     spatial_dims=["x", "y", "z"]
        ... )

        >>> # Batch crop multiple regions
        >>> bboxes = [
        ...     ((10, 20, 30), (60, 70, 80)),
        ...     ((100, 110, 120), (150, 160, 170))
        ... ]
        >>> cropped_list = znii.crop(bboxes, physical_coords=True)

    Notes:
        - Coordinates are in voxel space (0-based indexing) by default
        - Physical coordinates are in RAS orientation (Right-Anterior-Superior)
        - The cropped region includes bbox_min but excludes bbox_max
        - All non-spatial dimensions (channels, time) are preserved
        - Spatial transformations are automatically updated
        - When batch cropping, all patches share the same spatial_dims and
          physical_coords settings
    """
    # Check if this is batch cropping (list of bounding boxes)
    # A batch crop is a list of (bbox_min, bbox_max) tuples
    # Each element should be a tuple/list of two elements
    is_batch_crop = (
        isinstance(bbox_min, list)
        and len(bbox_min) > 0
        and isinstance(bbox_min[0], (tuple, list))
        and len(bbox_min[0]) == 2
    )

    if is_batch_crop:
        if bbox_max is not None:
            raise ValueError(
                "bbox_max should be None when bbox_min is a list of bounding boxes"
            )
        # Batch crop: recursively call crop for each bounding box
        return [
            self.crop(bmin, bmax, spatial_dims, physical_coords)
            for bmin, bmax in bbox_min
        ]

    # Single crop: original implementation
    if bbox_max is None:
        raise ValueError("bbox_max is required when bbox_min is not a list")

    if spatial_dims is None:
        spatial_dims = (
            ["z", "y", "x"] if self.axes_order == "ZYX" else ["x", "y", "z"]
        )

    # Convert physical coordinates to voxel coordinates if needed
    if physical_coords:
        # Physical coords are always in (x, y, z) order
        # Convert to homogeneous coordinates
        phys_min = np.array(list(bbox_min) + [1.0])
        phys_max = np.array(list(bbox_max) + [1.0])

        # Get inverse affine to convert from physical to voxel
        affine_inv = np.linalg.inv(
            self.get_affine_matrix(axes_order="XYZ")
        )  # TODO: should this always be xyz affine??

        # Transform to voxel coordinates
        voxel_min = affine_inv @ phys_min
        voxel_max = affine_inv @ phys_max

        # Extract voxel coordinates (x, y, z)
        voxel_min_xyz = voxel_min[:3]
        voxel_max_xyz = voxel_max[:3]

        # Round to nearest integer voxel indices
        voxel_min_xyz = np.round(voxel_min_xyz).astype(int)
        voxel_max_xyz = np.round(voxel_max_xyz).astype(int)

        # Ensure max >= min
        voxel_min_xyz = np.minimum(voxel_min_xyz, voxel_max_xyz)
        voxel_max_xyz = np.maximum(
            np.round(affine_inv @ phys_min).astype(int)[:3],
            np.round(affine_inv @ phys_max).astype(int)[:3],
        )

        # Create mapping from x,y,z to voxel coordinates
        bbox_min = voxel_min_xyz
        bbox_max = voxel_max_xyz

    # Create mapping from x,y,z to voxel coordinates
    bbox_vox_min = {
        "x": bbox_min[0],
        "y": bbox_min[1],
        "z": bbox_min[2],
    }
    bbox_vox_max = {
        "x": bbox_max[0],
        "y": bbox_max[1],
        "z": bbox_max[2],
    }

    dim_flips = _axcodes2flips(self.orientation)
    cropped_image = crop_ngff_image(
        self.ngff_image, bbox_vox_min, bbox_vox_max, dim_flips
    )
    return ZarrNii(
        ngff_image=cropped_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        _omero=self._omero,
    )

zarrnii.ZarrNii.crop_with_bounding_box(bbox_min, bbox_max, ras_coords=False)

Legacy method name for crop.

Parameters:

  • bbox_min

    Minimum corner coordinates

  • bbox_max

    Maximum corner coordinates

  • ras_coords

    If True, coordinates are in RAS physical space (deprecated, use physical_coords parameter of crop() instead)

Source code in zarrnii/core.py
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
def crop_with_bounding_box(self, bbox_min, bbox_max, ras_coords=False):
    """Legacy method name for crop.

    Args:
        bbox_min: Minimum corner coordinates
        bbox_max: Maximum corner coordinates
        ras_coords: If True, coordinates are in RAS physical space (deprecated,
            use physical_coords parameter of crop() instead)
    """
    return self.crop(bbox_min, bbox_max, physical_coords=ras_coords)

zarrnii.ZarrNii.crop_centered(centers, patch_size, spatial_dims=None, fill_value=0.0)

Extract fixed-size patches centered at specified coordinates.

Crops the image to extract patches of a fixed size (in voxels) centered at the given physical coordinates. This is particularly useful for machine learning workflows where training patches must have consistent dimensions. The method can process a single center or multiple centers at once.

Patches that extend beyond image boundaries are padded with the fill_value to ensure all patches have exactly the requested size.

Parameters:

  • centers (Union[Tuple[float, float, float], List[Tuple[float, float, float]]]) –

    Either: - Single center coordinate as (x, y, z) tuple in physical space (mm) - List of center coordinates for batch processing

  • patch_size (Tuple[int, int, int]) –

    Size of the patch in voxels as (x, y, z) tuple. This defines the dimensions of each cropped region in voxel space. All returned patches will have exactly this size.

  • spatial_dims (Optional[List[str]], default: None ) –

    Names of spatial dimensions to crop. If None, automatically derived from axes_order ("z","y","x" for ZYX or "x","y","z" for XYZ). Default is None.

  • fill_value (float, default: 0.0 ) –

    Value to use for padding when patches extend beyond image boundaries. Default is 0.0.

Returns:

  • Union['ZarrNii', List['ZarrNii']]

    Single ZarrNii instance (when centers is a single tuple) or list of

  • Union['ZarrNii', List['ZarrNii']]

    ZarrNii instances (when centers is a list) with cropped data and

  • Union['ZarrNii', List['ZarrNii']]

    updated spatial metadata. All patches will have exactly the shape

  • Union['ZarrNii', List['ZarrNii']]

    specified by patch_size (plus any non-spatial dimensions).

Raises:

  • ValueError

    If coordinates/dimensions are invalid

  • IndexError

    If patch_size dimensions don't match spatial dimensions

Examples:

>>> # Extract single 256x256x256 voxel patch at a coordinate
>>> center = (50.0, 60.0, 70.0)  # physical coordinates in mm
>>> patch = znii.crop_centered(center, patch_size=(256, 256, 256))
>>>
>>> # Extract multiple patches for ML training
>>> centers = [
...     (50.0, 60.0, 70.0),
...     (100.0, 110.0, 120.0),
...     (150.0, 160.0, 170.0)
... ]
>>> patches = znii.crop_centered(centers, patch_size=(128, 128, 128))
>>> # Returns list of 3 ZarrNii instances, all with shape (1, 128, 128, 128)
>>>
>>> # Use with atlas sampling for ML training workflow
>>> centers = atlas.sample_region_patches(
...     n_patches=100,
...     region_ids="cortex",
...     seed=42
... )
>>> patches = image.crop_centered(centers, patch_size=(256, 256, 256))
>>>
>>> # Use custom fill value for padding
>>> patch = znii.crop_centered(center, patch_size=(256, 256, 256), fill_value=-1.0)
Notes
  • Centers are in physical/world coordinates (mm), always in (x, y, z) order
  • patch_size is in voxels, in (x, y, z) order
  • The patch is centered at the given coordinate, extending ±patch_size/2
  • If patch_size is odd, the center voxel is included
  • Patches near boundaries are padded with fill_value to maintain size
  • All patches are guaranteed to have exactly the requested size
  • Useful for ML training where fixed patch sizes are required
  • Coordinates from atlas.sample_region_patches() can be used directly
Source code in zarrnii/core.py
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
def crop_centered(
    self,
    centers: Union[Tuple[float, float, float], List[Tuple[float, float, float]]],
    patch_size: Tuple[int, int, int],
    spatial_dims: Optional[List[str]] = None,
    fill_value: float = 0.0,
) -> Union["ZarrNii", List["ZarrNii"]]:
    """Extract fixed-size patches centered at specified coordinates.

    Crops the image to extract patches of a fixed size (in voxels) centered
    at the given physical coordinates. This is particularly useful for machine
    learning workflows where training patches must have consistent dimensions.
    The method can process a single center or multiple centers at once.

    Patches that extend beyond image boundaries are padded with the fill_value
    to ensure all patches have exactly the requested size.

    Args:
        centers: Either:
            - Single center coordinate as (x, y, z) tuple in physical space (mm)
            - List of center coordinates for batch processing
        patch_size: Size of the patch in voxels as (x, y, z) tuple.
            This defines the dimensions of each cropped region in voxel space.
            All returned patches will have exactly this size.
        spatial_dims: Names of spatial dimensions to crop. If None,
            automatically derived from axes_order ("z","y","x" for ZYX
            or "x","y","z" for XYZ). Default is None.
        fill_value: Value to use for padding when patches extend beyond
            image boundaries. Default is 0.0.

    Returns:
        Single ZarrNii instance (when centers is a single tuple) or list of
        ZarrNii instances (when centers is a list) with cropped data and
        updated spatial metadata. All patches will have exactly the shape
        specified by patch_size (plus any non-spatial dimensions).

    Raises:
        ValueError: If coordinates/dimensions are invalid
        IndexError: If patch_size dimensions don't match spatial dimensions

    Examples:
        >>> # Extract single 256x256x256 voxel patch at a coordinate
        >>> center = (50.0, 60.0, 70.0)  # physical coordinates in mm
        >>> patch = znii.crop_centered(center, patch_size=(256, 256, 256))
        >>>
        >>> # Extract multiple patches for ML training
        >>> centers = [
        ...     (50.0, 60.0, 70.0),
        ...     (100.0, 110.0, 120.0),
        ...     (150.0, 160.0, 170.0)
        ... ]
        >>> patches = znii.crop_centered(centers, patch_size=(128, 128, 128))
        >>> # Returns list of 3 ZarrNii instances, all with shape (1, 128, 128, 128)
        >>>
        >>> # Use with atlas sampling for ML training workflow
        >>> centers = atlas.sample_region_patches(
        ...     n_patches=100,
        ...     region_ids="cortex",
        ...     seed=42
        ... )
        >>> patches = image.crop_centered(centers, patch_size=(256, 256, 256))
        >>>
        >>> # Use custom fill value for padding
        >>> patch = znii.crop_centered(center, patch_size=(256, 256, 256), fill_value=-1.0)

    Notes:
        - Centers are in physical/world coordinates (mm), always in (x, y, z) order
        - patch_size is in voxels, in (x, y, z) order
        - The patch is centered at the given coordinate, extending ±patch_size/2
        - If patch_size is odd, the center voxel is included
        - Patches near boundaries are padded with fill_value to maintain size
        - All patches are guaranteed to have exactly the requested size
        - Useful for ML training where fixed patch sizes are required
        - Coordinates from atlas.sample_region_patches() can be used directly
    """
    # Check if this is batch processing (list of centers)
    is_batch = isinstance(centers, list)

    if is_batch:
        # Batch processing: recursively call crop_centered for each center
        return [
            self.crop_centered(center, patch_size, spatial_dims, fill_value)
            for center in centers
        ]

    # Single center processing
    if spatial_dims is None:
        spatial_dims = (
            ["z", "y", "x"] if self.axes_order == "ZYX" else ["x", "y", "z"]
        )

    # Convert center from physical to voxel coordinates
    # Centers are always in (x, y, z) order
    center_phys = np.array(list(centers) + [1.0])

    # Get inverse affine to convert from physical to voxel
    affine_inv = np.linalg.inv(self.get_affine_matrix(axes_order="XYZ"))

    # Transform to voxel coordinates
    center_voxel = affine_inv @ center_phys
    center_voxel_xyz = center_voxel[:3]

    # patch_size is in voxels, in (x, y, z) order
    patch_size_np = np.array(patch_size)
    half_patch = patch_size_np / 2.0

    # Calculate desired bounding box in voxel coordinates (may extend beyond image)
    voxel_min_xyz = center_voxel_xyz - half_patch
    voxel_max_xyz = center_voxel_xyz + half_patch

    # Round to nearest integer voxel indices
    voxel_min_xyz = np.round(voxel_min_xyz).astype(int)
    voxel_max_xyz = np.round(voxel_max_xyz).astype(int)

    # Ensure we get exactly the requested patch size
    # Adjust max to ensure patch_size is respected
    voxel_max_xyz = voxel_min_xyz + patch_size_np

    # Get image dimensions in voxel space
    # Map spatial dims to their indices
    spatial_dim_indices = {}
    for i, dim in enumerate(self.ngff_image.dims):
        if dim.lower() in [d.lower() for d in spatial_dims]:
            spatial_dim_indices[dim.lower()] = i

    image_shape_xyz = np.array(
        [
            self.ngff_image.data.shape[spatial_dim_indices["x"]],
            self.ngff_image.data.shape[spatial_dim_indices["y"]],
            self.ngff_image.data.shape[spatial_dim_indices["z"]],
        ]
    )

    # Calculate the actual crop region (clipped to image bounds)
    crop_min_xyz = np.maximum(voxel_min_xyz, 0)
    crop_max_xyz = np.minimum(voxel_max_xyz, image_shape_xyz)

    # Ensure crop_max >= crop_min to avoid empty arrays
    crop_max_xyz = np.maximum(crop_min_xyz, crop_max_xyz)

    # Calculate padding needed on each side
    pad_before_xyz = crop_min_xyz - voxel_min_xyz  # How much we're clipped at start
    pad_after_xyz = voxel_max_xyz - crop_max_xyz  # How much we're clipped at end

    # Check if the entire patch is outside the image bounds
    # This happens when crop_min >= crop_max in any dimension after clipping
    is_completely_outside = np.any(crop_min_xyz >= crop_max_xyz)

    if is_completely_outside:
        # The entire patch is outside the image bounds
        # Create a completely padded array with the fill value
        import dask.array as da

        # Build the full patch shape
        full_shape = []
        spatial_idx = 0
        for dim in self.ngff_image.dims:
            if dim.lower() in [d.lower() for d in spatial_dims]:
                full_shape.append(patch_size_np[spatial_idx])
                spatial_idx += 1
            else:
                # Non-spatial dimension - keep original size
                dim_idx = self.ngff_image.dims.index(dim)
                full_shape.append(self.ngff_image.data.shape[dim_idx])

        # Create array filled with fill_value
        padded_data = da.full(
            tuple(full_shape),
            fill_value,
            dtype=self.ngff_image.data.dtype,
            chunks=self.ngff_image.data.chunksize,
        )

        # Calculate translation for the patch center
        # The translation should be at voxel_min_xyz (the desired start of patch)
        new_translation = {}
        for dim in self.ngff_image.dims:
            if dim.lower() in [d.lower() for d in spatial_dims]:
                dim_lower = dim.lower()
                if dim_lower == "x":
                    voxel_start = voxel_min_xyz[0]
                elif dim_lower == "y":
                    voxel_start = voxel_min_xyz[1]
                elif dim_lower == "z":
                    voxel_start = voxel_min_xyz[2]
                else:
                    voxel_start = 0

                # Translation is voxel_start * scale + original translation
                new_translation[dim] = voxel_start * self.ngff_image.scale.get(
                    dim, 1.0
                ) + self.ngff_image.translation.get(dim, 0.0)
            elif dim in self.ngff_image.translation:
                new_translation[dim] = self.ngff_image.translation[dim]

        # Create NgffImage with the padded data
        padded_image = nz.NgffImage(
            data=padded_data,
            dims=self.ngff_image.dims,
            scale=self.ngff_image.scale.copy(),
            translation=new_translation,
            name=self.ngff_image.name,
        )

        return ZarrNii(
            ngff_image=padded_image,
            axes_order=self.axes_order,
            xyz_orientation=self.xyz_orientation,
            _omero=self._omero,
        )

    # Create mapping from x,y,z to voxel coordinates for cropping
    bbox_vox_min = {
        "x": crop_min_xyz[0],
        "y": crop_min_xyz[1],
        "z": crop_min_xyz[2],
    }
    bbox_vox_max = {
        "x": crop_max_xyz[0],
        "y": crop_max_xyz[1],
        "z": crop_max_xyz[2],
    }

    dim_flips = _axcodes2flips(self.orientation)
    # Crop the actual image data that exists
    cropped_image = crop_ngff_image(
        self.ngff_image, bbox_vox_min, bbox_vox_max, dim_flips
    )

    # Check if padding is needed
    needs_padding = np.any(pad_before_xyz > 0) or np.any(pad_after_xyz > 0)

    if needs_padding:
        # Build padding specification for all dimensions
        pad_width = []
        spatial_idx = 0

        for dim in cropped_image.dims:
            if dim.lower() in [d.lower() for d in spatial_dims]:
                # Spatial dimension - may need padding
                dim_lower = dim.lower()
                if dim_lower == "x":
                    pad_width.append((pad_before_xyz[0], pad_after_xyz[0]))
                elif dim_lower == "y":
                    pad_width.append((pad_before_xyz[1], pad_after_xyz[1]))
                elif dim_lower == "z":
                    pad_width.append((pad_before_xyz[2], pad_after_xyz[2]))
                spatial_idx += 1
            else:
                # Non-spatial dimension - no padding
                pad_width.append((0, 0))

        # Apply padding
        import dask.array as da

        padded_data = da.pad(
            cropped_image.data,
            pad_width=pad_width,
            mode="constant",
            constant_values=fill_value,
        )

        # Adjust translation for the padding
        new_translation = cropped_image.translation.copy()

        for i, dim in enumerate(bbox_vox_min.keys()):
            new_translation[dim] = new_translation[dim] + dim_flips[
                dim
            ] * pad_before_xyz[i] * cropped_image.scale.get(dim, 1.0)

        # Create padded NgffImage
        cropped_image = nz.NgffImage(
            data=padded_data,
            dims=cropped_image.dims,
            scale=cropped_image.scale,
            translation=new_translation,
            name=cropped_image.name,
        )

    return ZarrNii(
        ngff_image=cropped_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        _omero=self._omero,
    )

zarrnii.ZarrNii.downsample(factors=None, along_x=1, along_y=1, along_z=1, level=None, spatial_dims=None)

Reduce image resolution by downsampling.

Performs spatial downsampling by averaging blocks of voxels, effectively reducing image resolution and size. Multiple parameter options provide flexibility for different downsampling strategies.

Parameters:

  • factors (Optional[Union[int, List[int]]], default: None ) –

    Downsampling factors for spatial dimensions. Can be: - int: Same factor applied to all spatial dimensions - List[int]: Per-dimension factors matching spatial_dims order - None: Use other parameters to determine factors

  • along_x (int, default: 1 ) –

    Downsampling factor for X dimension (legacy parameter)

  • along_y (int, default: 1 ) –

    Downsampling factor for Y dimension (legacy parameter)

  • along_z (int, default: 1 ) –

    Downsampling factor for Z dimension (legacy parameter)

  • level (Optional[int], default: None ) –

    Power-of-2 downsampling level (factors = 2^level). Takes precedence over along_* parameters

  • spatial_dims (Optional[List[str]], default: None ) –

    Names of spatial dimensions. If None, derived from axes_order

Returns:

  • 'ZarrNii'

    New ZarrNii instance with downsampled data and updated metadata

Raises:

  • ValueError

    If conflicting parameters provided or invalid factors

Examples:

>>> # Isotropic downsampling by factor of 2
>>> downsampled = znii.downsample(factors=2)
>>> # Anisotropic downsampling
>>> downsampled = znii.downsample(factors=[1, 2, 2])
>>> # Using legacy parameters
>>> downsampled = znii.downsample(along_x=2, along_y=2, along_z=1)
>>> # Power-of-2 downsampling
>>> downsampled = znii.downsample(level=2)  # factors = 4
Notes
  • Downsampling uses block averaging for anti-aliasing
  • Spatial transformations are automatically scaled
  • Non-spatial dimensions (channels, time) are preserved
  • Original data remains unchanged (creates new instance)
Source code in zarrnii/core.py
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
def downsample(
    self,
    factors: Optional[Union[int, List[int]]] = None,
    along_x: int = 1,
    along_y: int = 1,
    along_z: int = 1,
    level: Optional[int] = None,
    spatial_dims: Optional[List[str]] = None,
) -> "ZarrNii":
    """Reduce image resolution by downsampling.

    Performs spatial downsampling by averaging blocks of voxels, effectively
    reducing image resolution and size. Multiple parameter options provide
    flexibility for different downsampling strategies.

    Args:
        factors: Downsampling factors for spatial dimensions. Can be:
            - int: Same factor applied to all spatial dimensions
            - List[int]: Per-dimension factors matching spatial_dims order
            - None: Use other parameters to determine factors
        along_x: Downsampling factor for X dimension (legacy parameter)
        along_y: Downsampling factor for Y dimension (legacy parameter)
        along_z: Downsampling factor for Z dimension (legacy parameter)
        level: Power-of-2 downsampling level (factors = 2^level).
            Takes precedence over along_* parameters
        spatial_dims: Names of spatial dimensions. If None, derived
            from axes_order

    Returns:
        New ZarrNii instance with downsampled data and updated metadata

    Raises:
        ValueError: If conflicting parameters provided or invalid factors

    Examples:
        >>> # Isotropic downsampling by factor of 2
        >>> downsampled = znii.downsample(factors=2)

        >>> # Anisotropic downsampling
        >>> downsampled = znii.downsample(factors=[1, 2, 2])

        >>> # Using legacy parameters
        >>> downsampled = znii.downsample(along_x=2, along_y=2, along_z=1)

        >>> # Power-of-2 downsampling
        >>> downsampled = znii.downsample(level=2)  # factors = 4

    Notes:
        - Downsampling uses block averaging for anti-aliasing
        - Spatial transformations are automatically scaled
        - Non-spatial dimensions (channels, time) are preserved
        - Original data remains unchanged (creates new instance)
    """
    # Handle legacy parameters
    if factors is None:
        if level is not None:
            factors = 2**level
        else:
            factors = (
                [along_z, along_y, along_x]
                if self.axes_order == "ZYX"
                else [along_x, along_y, along_z]
            )

    if spatial_dims is None:
        spatial_dims = (
            ["z", "y", "x"] if self.axes_order == "ZYX" else ["x", "y", "z"]
        )

    downsampled_image = downsample_ngff_image(
        self.ngff_image, factors, spatial_dims
    )
    return ZarrNii(
        ngff_image=downsampled_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        _omero=self._omero,
    )

zarrnii.ZarrNii.upsample(along_x=1, along_y=1, along_z=1, to_shape=None)

Upsamples the ZarrNii instance using scipy.ndimage.zoom.

Parameters:

  • along_x (int, default: 1 ) –

    Upsampling factor along the X-axis (default: 1).

  • along_y (int, default: 1 ) –

    Upsampling factor along the Y-axis (default: 1).

  • along_z (int, default: 1 ) –

    Upsampling factor along the Z-axis (default: 1).

  • to_shape (tuple, default: None ) –

    Target shape for upsampling. Should include all dimensions (e.g., (c, z, y, x) for ZYX or (c, x, y, z) for XYZ). If provided, along_x, along_y, and along_z are ignored.

Returns:

  • ZarrNii

    A new ZarrNii instance with the upsampled data and updated affine.

Notes
  • This method supports both direct scaling via along_* factors or target shape via to_shape.
  • If to_shape is provided, chunk sizes and scaling factors are dynamically calculated.
  • The affine matrix is updated to reflect the new voxel size after upsampling.
Example

Upsample with scaling factors

upsampled_znimg = znimg.upsample(along_x=2, along_y=2, along_z=2)

Upsample to a specific shape

upsampled_znimg = znimg.upsample(to_shape=(1, 256, 256, 256))

Source code in zarrnii/core.py
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
def upsample(self, along_x=1, along_y=1, along_z=1, to_shape=None):
    """
    Upsamples the ZarrNii instance using `scipy.ndimage.zoom`.

    Parameters:
        along_x (int, optional): Upsampling factor along the X-axis (default: 1).
        along_y (int, optional): Upsampling factor along the Y-axis (default: 1).
        along_z (int, optional): Upsampling factor along the Z-axis (default: 1).
        to_shape (tuple, optional): Target shape for upsampling. Should include all dimensions
                                     (e.g., `(c, z, y, x)` for ZYX or `(c, x, y, z)` for XYZ).
                                     If provided, `along_x`, `along_y`, and `along_z` are ignored.

    Returns:
        ZarrNii: A new ZarrNii instance with the upsampled data and updated affine.

    Notes:
        - This method supports both direct scaling via `along_*` factors or target shape via `to_shape`.
        - If `to_shape` is provided, chunk sizes and scaling factors are dynamically calculated.
        - The affine matrix is updated to reflect the new voxel size after upsampling.

    Example:
        # Upsample with scaling factors
        upsampled_znimg = znimg.upsample(along_x=2, along_y=2, along_z=2)

        # Upsample to a specific shape
        upsampled_znimg = znimg.upsample(to_shape=(1, 256, 256, 256))
    """
    # Determine scaling and chunks based on input parameters
    if to_shape is None:
        if self.axes_order == "XYZ":
            scaling = (1, along_x, along_y, along_z)
        else:
            scaling = (1, along_z, along_y, along_x)

        chunks_out = tuple(
            tuple(c * scale for c in chunks_i)
            for chunks_i, scale in zip(self.data.chunks, scaling)
        )
    else:
        chunks_out, scaling = self.__get_upsampled_chunks(to_shape)

    # Define block-wise upsampling function
    def zoom_blocks(x, block_info=None):
        """
        Scales blocks to the desired size using `scipy.ndimage.zoom`.

        Parameters:
            x (np.ndarray): Input block data.
            block_info (dict, optional): Metadata about the current block.

        Returns:
            np.ndarray: The upscaled block.
        """
        # Calculate scaling factors based on input and output chunk shapes
        scaling = tuple(
            out_n / in_n
            for out_n, in_n in zip(block_info[None]["chunk-shape"], x.shape)
        )
        return zoom(x, scaling, order=1, prefilter=False)

    # Perform block-wise upsampling
    darr_scaled = da.map_blocks(
        zoom_blocks, self.data, dtype=self.data.dtype, chunks=chunks_out
    )

    # Update the affine matrix to reflect the new voxel size
    if self.axes_order == "XYZ":
        scaling_matrix = np.diag(
            (1 / scaling[1], 1 / scaling[2], 1 / scaling[3], 1)
        )
    else:
        scaling_matrix = np.diag(
            (1 / scaling[-1], 1 / scaling[-2], 1 / scaling[-3], 1)
        )

    # Create new NgffImage with upsampled data
    dims = self.dims
    if self.axes_order == "XYZ":
        new_scale = {
            dims[1]: self.scale[dims[1]] / scaling[1],
            dims[2]: self.scale[dims[2]] / scaling[2],
            dims[3]: self.scale[dims[3]] / scaling[3],
        }
    else:
        new_scale = {
            dims[1]: self.scale[dims[1]] / scaling[1],
            dims[2]: self.scale[dims[2]] / scaling[2],
            dims[3]: self.scale[dims[3]] / scaling[3],
        }

    upsampled_ngff = nz.to_ngff_image(
        darr_scaled,
        dims=dims,
        scale=new_scale,
        translation=self.translation.copy(),
        name=self.name,
    )

    # Return a new ZarrNii instance with the upsampled data
    return ZarrNii.from_ngff_image(
        upsampled_ngff,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        omero=self.omero,
    )

zarrnii.ZarrNii.get_bounded_subregion(points)

Extracts a bounded subregion of the dask array containing the specified points, along with the grid points for interpolation.

If the points extend beyond the domain of the dask array, the extent is capped at the boundaries. If all points are outside the domain, the function returns (None, None).

Parameters:

  • points (ndarray) –

    Nx3 or Nx4 array of coordinates in the array's space. If Nx4, the last column is assumed to be the homogeneous coordinate and is ignored.

Returns:

  • tuple

    grid_points (tuple): A tuple of three 1D arrays representing the grid points along each axis (X, Y, Z) in the subregion. subvol (np.ndarray or None): The extracted subregion as a NumPy array. Returns None if all points are outside the array domain.

Notes
  • The function uses compute() on the dask array to immediately load the subregion, as Dask doesn't support the type of indexing required for interpolation.
  • A padding of 1 voxel is applied around the extent of the points.
Example

grid_points, subvol = znimg.get_bounded_subregion(points) if subvol is not None: print("Subvolume shape:", subvol.shape)

Source code in zarrnii/core.py
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
def get_bounded_subregion(self, points: np.ndarray):
    """
    Extracts a bounded subregion of the dask array containing the specified points,
    along with the grid points for interpolation.

    If the points extend beyond the domain of the dask array, the extent is capped
    at the boundaries. If all points are outside the domain, the function returns
    `(None, None)`.

    Parameters:
        points (np.ndarray): Nx3 or Nx4 array of coordinates in the array's space.
                             If Nx4, the last column is assumed to be the homogeneous
                             coordinate and is ignored.

    Returns:
        tuple:
            grid_points (tuple): A tuple of three 1D arrays representing the grid
                                 points along each axis (X, Y, Z) in the subregion.
            subvol (np.ndarray or None): The extracted subregion as a NumPy array.
                                         Returns `None` if all points are outside
                                         the array domain.

    Notes:
        - The function uses `compute()` on the dask array to immediately load the
          subregion, as Dask doesn't support the type of indexing required for
          interpolation.
        - A padding of 1 voxel is applied around the extent of the points.

    Example:
        grid_points, subvol = znimg.get_bounded_subregion(points)
        if subvol is not None:
            print("Subvolume shape:", subvol.shape)
    """
    pad = 1  # Padding around the extent of the points

    # Compute the extent of the points in the array's coordinate space
    min_extent = np.floor(points.min(axis=1)[:3] - pad).astype("int")
    max_extent = np.ceil(points.max(axis=1)[:3] + pad).astype("int")

    # Clip the extents to ensure they stay within the bounds of the array
    clip_min = np.zeros_like(min_extent)
    clip_max = np.array(self.darr.shape[-3:])  # Z, Y, X dimensions

    min_extent = np.clip(min_extent, clip_min, clip_max)
    max_extent = np.clip(max_extent, clip_min, clip_max)

    # Check if all points are outside the domain
    if np.any(max_extent <= min_extent):
        return None, None

    # Extract the subvolume using the computed extents
    subvol = self.darr[
        :,
        min_extent[0] : max_extent[0],
        min_extent[1] : max_extent[1],
        min_extent[2] : max_extent[2],
    ].compute()

    # Generate grid points for interpolation
    grid_points = (
        np.arange(min_extent[0], max_extent[0]),  # Z
        np.arange(min_extent[1], max_extent[1]),  # Y
        np.arange(min_extent[2], max_extent[2]),  # X
    )

    return grid_points, subvol

zarrnii.ZarrNii.apply_transform(*transforms, ref_znimg, spatial_dims=None)

Apply spatial transformations to image data.

Transforms the image data to align with a reference image space using the provided transformation(s). This enables registration, resampling, and coordinate system conversions.

Parameters:

  • *transforms (Transform, default: () ) –

    Variable number of Transform objects to apply sequentially. Supported transform types: - AffineTransform: Linear transformations (rotation, scaling, translation) - DisplacementTransform: Non-linear deformation fields

  • ref_znimg ('ZarrNii') –

    Reference ZarrNii image defining the target coordinate system, grid spacing, and field of view for the output

  • spatial_dims (Optional[List[str]], default: None ) –

    Names of spatial dimensions for transformation. If None, automatically derived from axes_order

Returns:

  • 'ZarrNii'

    New ZarrNii instance with transformed data in reference space

Raises:

  • ValueError

    If no transforms provided or reference image incompatible

  • TypeError

    If transforms are not valid Transform objects

Examples:

>>> # Apply affine transformation
>>> affine = AffineTransform.from_txt("transform.txt")
>>> transformed = moving.apply_transform(affine, ref_znimg=reference)
>>> # Apply multiple transforms sequentially
>>> affine = AffineTransform.identity()
>>> warp = DisplacementTransform.from_nifti("warp.nii.gz")
>>> result = moving.apply_transform(affine, warp, ref_znimg=reference)
Notes
  • Transformations are applied in the order specified
  • Output data inherits spatial properties from ref_znimg
  • Uses interpolation for non-integer coordinate mappings
  • Non-spatial dimensions (channels, time) are preserved
Source code in zarrnii/core.py
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
def apply_transform(
    self,
    *transforms: Transform,
    ref_znimg: "ZarrNii",
    spatial_dims: Optional[List[str]] = None,
) -> "ZarrNii":
    """Apply spatial transformations to image data.

    Transforms the image data to align with a reference image space using
    the provided transformation(s). This enables registration, resampling,
    and coordinate system conversions.

    Args:
        *transforms: Variable number of Transform objects to apply sequentially.
            Supported transform types:
            - AffineTransform: Linear transformations (rotation, scaling, translation)
            - DisplacementTransform: Non-linear deformation fields
        ref_znimg: Reference ZarrNii image defining the target coordinate system,
            grid spacing, and field of view for the output
        spatial_dims: Names of spatial dimensions for transformation. If None,
            automatically derived from axes_order

    Returns:
        New ZarrNii instance with transformed data in reference space

    Raises:
        ValueError: If no transforms provided or reference image incompatible
        TypeError: If transforms are not valid Transform objects

    Examples:
        >>> # Apply affine transformation
        >>> affine = AffineTransform.from_txt("transform.txt")
        >>> transformed = moving.apply_transform(affine, ref_znimg=reference)

        >>> # Apply multiple transforms sequentially
        >>> affine = AffineTransform.identity()
        >>> warp = DisplacementTransform.from_nifti("warp.nii.gz")
        >>> result = moving.apply_transform(affine, warp, ref_znimg=reference)

    Notes:
        - Transformations are applied in the order specified
        - Output data inherits spatial properties from ref_znimg
        - Uses interpolation for non-integer coordinate mappings
        - Non-spatial dimensions (channels, time) are preserved
    """
    if spatial_dims is None:
        spatial_dims = (
            ["z", "y", "x"] if self.axes_order == "ZYX" else ["x", "y", "z"]
        )

    # Initialize the list of transformations to apply
    tfms_to_apply = [ref_znimg.affine]  # Start with the reference image affine

    # Append all transformations passed as arguments
    tfms_to_apply.extend(transforms)

    # Append the inverse of the current image's affine
    tfms_to_apply.append(self.affine.invert())

    # Create new NgffImage from ref image
    interp_ngff_image = nz.NgffImage(
        data=ref_znimg.data,
        dims=ref_znimg.ngff_image.dims.copy(),
        scale=ref_znimg.ngff_image.scale.copy(),
        translation=ref_znimg.ngff_image.translation.copy(),
        name=f"{self.name}_transformed_to_{ref_znimg.name}",
    )
    # Lazily apply the transformations using dask
    interp_ngff_image.data = da.map_blocks(
        interp_by_block,  # Function to interpolate each block
        ref_znimg.data,  # Reference image data
        dtype=np.float32,  # Output data type
        transforms=tfms_to_apply,  # Transformations to apply
        flo_znimg=self,  # Floating image to align
    )

    return ZarrNii.from_ngff_image(
        interp_ngff_image,
        axes_order=ref_znimg.axes_order,
        xyz_orientation=ref_znimg.xyz_orientation,
        omero=self.omero,
    )

zarrnii.ZarrNii.to_ome_zarr(store_or_path, max_layer=4, scale_factors=None, backend='ome-zarr-py', **kwargs)

Save to OME-Zarr store with multiscale pyramid.

Creates an OME-Zarr dataset with automatic multiscale pyramid generation for efficient visualization and processing at multiple resolutions. Preserves spatial metadata and supports various storage backends.

Parameters:

  • store_or_path (Union[str, Any]) –

    Target location for OME-Zarr store. Supports: - Local directory path - Remote URLs (s3://, gs://, etc.) - ZIP files (.zip extension for compressed storage) - Zarr store objects

  • max_layer (int, default: 4 ) –

    Maximum number of pyramid levels to create (including level 0). Higher values create more downsampled levels

  • scale_factors (Optional[List[int]], default: None ) –

    Custom downsampling factors for each pyramid level. If None, uses powers of 2: [2, 4, 8, 16, ...]

  • backend (str, default: 'ome-zarr-py' ) –

    Backend library to use for writing. Options: - 'ngff-zarr': Use ngff-zarr library (default) - 'ome-zarr-py': Use ome-zarr-py library for better dask integration

  • **kwargs (Any, default: {} ) –

    Additional arguments passed to the save function. For 'ngff-zarr': passed to to_ngff_zarr function For 'ome-zarr-py': passed to write_image (e.g., scaling_method, compute)

Returns:

  • 'ZarrNii'

    Self for method chaining

Raises:

  • OSError

    If unable to write to target location

  • ValueError

    If invalid scale_factors or backend provided

Examples:

>>> # Save with default pyramid levels
>>> znii.to_ome_zarr("/path/to/output.zarr")
>>> # Save to compressed ZIP with custom pyramid
>>> znii.to_ome_zarr(
...     "/path/to/output.zarr.zip",
...     max_layer=3,
...     scale_factors=[2, 4]
... )
>>> # Use ome-zarr-py backend for better dask performance
>>> znii.to_ome_zarr(
...     "/path/to/output.zarr",
...     backend="ome-zarr-py",
...     scaling_method="gaussian"
... )
>>> # Chain with other operations
>>> result = (znii.downsample(2)
...               .crop((0,0,0), (100,100,100))
...               .to_ome_zarr("processed.zarr"))
Notes
  • OME-Zarr files are always saved in ZYX axis order
  • Automatic axis reordering if current order is XYZ
  • Spatial transformations and metadata are preserved
  • Orientation information is stored using the new 'xyz_orientation' metadata key for consistency and future compatibility
  • The 'ome-zarr-py' backend provides better performance with dask and dask distributed workflows
Source code in zarrnii/core.py
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
def to_ome_zarr(
    self,
    store_or_path: Union[str, Any],
    max_layer: int = 4,
    scale_factors: Optional[List[int]] = None,
    backend: str = "ome-zarr-py",
    **kwargs: Any,
) -> "ZarrNii":
    """Save to OME-Zarr store with multiscale pyramid.

    Creates an OME-Zarr dataset with automatic multiscale pyramid generation
    for efficient visualization and processing at multiple resolutions.
    Preserves spatial metadata and supports various storage backends.

    Args:
        store_or_path: Target location for OME-Zarr store. Supports:
            - Local directory path
            - Remote URLs (s3://, gs://, etc.)
            - ZIP files (.zip extension for compressed storage)
            - Zarr store objects
        max_layer: Maximum number of pyramid levels to create (including level 0).
            Higher values create more downsampled levels
        scale_factors: Custom downsampling factors for each pyramid level.
            If None, uses powers of 2: [2, 4, 8, 16, ...]
        backend: Backend library to use for writing. Options:
            - 'ngff-zarr': Use ngff-zarr library (default)
            - 'ome-zarr-py': Use ome-zarr-py library for better dask integration
        **kwargs: Additional arguments passed to the save function.
            For 'ngff-zarr': passed to to_ngff_zarr function
            For 'ome-zarr-py': passed to write_image (e.g., scaling_method, compute)

    Returns:
        Self for method chaining

    Raises:
        OSError: If unable to write to target location
        ValueError: If invalid scale_factors or backend provided

    Examples:
        >>> # Save with default pyramid levels
        >>> znii.to_ome_zarr("/path/to/output.zarr")

        >>> # Save to compressed ZIP with custom pyramid
        >>> znii.to_ome_zarr(
        ...     "/path/to/output.zarr.zip",
        ...     max_layer=3,
        ...     scale_factors=[2, 4]
        ... )

        >>> # Use ome-zarr-py backend for better dask performance
        >>> znii.to_ome_zarr(
        ...     "/path/to/output.zarr",
        ...     backend="ome-zarr-py",
        ...     scaling_method="gaussian"
        ... )

        >>> # Chain with other operations
        >>> result = (znii.downsample(2)
        ...               .crop((0,0,0), (100,100,100))
        ...               .to_ome_zarr("processed.zarr"))

    Notes:
        - OME-Zarr files are always saved in ZYX axis order
        - Automatic axis reordering if current order is XYZ
        - Spatial transformations and metadata are preserved
        - Orientation information is stored using the new 'xyz_orientation'
          metadata key for consistency and future compatibility
        - The 'ome-zarr-py' backend provides better performance with dask
          and dask distributed workflows
    """
    # Validate backend parameter
    if backend not in ["ngff-zarr", "ome-zarr-py"]:
        raise ValueError(
            f"Invalid backend '{backend}'. Must be 'ngff-zarr' or 'ome-zarr-py'"
        )

    # Determine the image to save
    if self.axes_order == "XYZ":
        # Need to reorder data from XYZ to ZYX for OME-Zarr
        ngff_image_to_save = self._create_zyx_ngff_image()
    else:
        # Already in ZYX order
        ngff_image_to_save = self.ngff_image

    # Use the appropriate save function based on backend
    if backend == "ngff-zarr":
        save_ngff_image(
            ngff_image_to_save,
            store_or_path,
            max_layer,
            scale_factors,
            xyz_orientation=(
                self.xyz_orientation if hasattr(self, "xyz_orientation") else None
            ),
            **kwargs,
        )
    elif backend == "ome-zarr-py":
        save_ngff_image_with_ome_zarr(
            ngff_image_to_save,
            store_or_path,
            max_layer,
            scale_factors,
            xyz_orientation=(
                self.xyz_orientation if hasattr(self, "xyz_orientation") else None
            ),
            **kwargs,
        )

    # Add orientation metadata to the zarr store (only for non-ZIP files)
    # For ZIP files, orientation is handled inside save_ngff_image
    if not (isinstance(store_or_path, str) and store_or_path.endswith(".zip")):
        try:
            import zarr

            if isinstance(store_or_path, str):
                group = zarr.open_group(store_or_path, mode="r+")
            else:
                group = zarr.open_group(store_or_path, mode="r+")

            # Add metadata for xyz_orientation (new format)
            if hasattr(self, "xyz_orientation") and self.xyz_orientation:
                group.attrs["xyz_orientation"] = self.xyz_orientation
        except Exception:
            # If we can't write orientation metadata, that's not critical
            pass

    return self

zarrnii.ZarrNii.to_nifti(filename=None)

Convert to NIfTI format with automatic dimension handling.

Converts the ZarrNii image to NIfTI-1 format, handling dimension reordering, singleton dimension removal, and spatial transformation conversion. NIfTI files are always written in XYZ axis order.

Parameters:

  • filename (Optional[Union[str, bytes]], default: None ) –

    Output file path for saving. Supported extensions: - .nii: Uncompressed NIfTI - .nii.gz: Compressed NIfTI (recommended) If None, returns nibabel image object without saving

Returns:

  • Union[Nifti1Image, str]

    If filename is None: nibabel.Nifti1Image object

  • Union[Nifti1Image, str]

    If filename provided: path to saved file

Raises:

  • ValueError

    If data has non-singleton time or channel dimensions (NIfTI doesn't support >4D data)

  • OSError

    If unable to write to specified filename

Notes
  • Automatically reorders data from ZYX to XYZ if necessary
  • Removes singleton time/channel dimensions automatically
  • Spatial transformations are converted to NIfTI affine format
  • For 5D data (T,C,Z,Y,X), only singleton T/C dimensions are supported

Examples:

>>> # Save to compressed NIfTI file
>>> znii.to_nifti("output.nii.gz")
>>> # Get nibabel object without saving
>>> nifti_img = znii.to_nifti()
>>> print(nifti_img.shape)
>>> # Handle multi-channel data by selecting single channel first
>>> znii.select_channels([0]).to_nifti("channel0.nii.gz")
Source code in zarrnii/core.py
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
def to_nifti(
    self, filename: Optional[Union[str, bytes]] = None
) -> Union[nib.Nifti1Image, str]:
    """Convert to NIfTI format with automatic dimension handling.

    Converts the ZarrNii image to NIfTI-1 format, handling dimension
    reordering, singleton dimension removal, and spatial transformation
    conversion. NIfTI files are always written in XYZ axis order.

    Args:
        filename: Output file path for saving. Supported extensions:
            - .nii: Uncompressed NIfTI
            - .nii.gz: Compressed NIfTI (recommended)
            If None, returns nibabel image object without saving

    Returns:
        If filename is None: nibabel.Nifti1Image object
        If filename provided: path to saved file

    Raises:
        ValueError: If data has non-singleton time or channel dimensions
            (NIfTI doesn't support >4D data)
        OSError: If unable to write to specified filename

    Notes:
        - Automatically reorders data from ZYX to XYZ if necessary
        - Removes singleton time/channel dimensions automatically
        - Spatial transformations are converted to NIfTI affine format
        - For 5D data (T,C,Z,Y,X), only singleton T/C dimensions are supported

    Examples:
        >>> # Save to compressed NIfTI file
        >>> znii.to_nifti("output.nii.gz")

        >>> # Get nibabel object without saving
        >>> nifti_img = znii.to_nifti()
        >>> print(nifti_img.shape)

        >>> # Handle multi-channel data by selecting single channel first
        >>> znii.select_channels([0]).to_nifti("channel0.nii.gz")

    Warnings:
        Large images will be computed in memory during conversion.
        Consider downsampling or cropping first for very large datasets.
    """
    # Get data and dimensions
    data = self.data.compute()

    dims = self.dims

    # Handle dimensional reduction for NIfTI compatibility
    # NIfTI supports up to 4D, so we need to remove singleton dimensions
    squeeze_axes = []
    remaining_dims = []

    for i, dim in enumerate(dims):
        if dim in ["t", "c"] and data.shape[i] == 1:
            # Remove singleton time or channel dimensions
            squeeze_axes.append(i)
        elif dim in ["t", "c"] and data.shape[i] > 1:
            # Non-singleton time or channel dimensions - NIfTI can't handle this
            raise ValueError(
                f"NIfTI format doesn't support non-singleton {dim} dimension. "
                f"Dimension '{dim}' has size {data.shape[i]}. "
                f"Consider selecting specific timepoints/channels first."
            )
        else:
            remaining_dims.append(dim)

    # Squeeze out singleton dimensions
    if squeeze_axes:
        data = np.squeeze(data, axis=tuple(squeeze_axes))

    # Check final dimensionality
    if data.ndim > 4:
        raise ValueError(
            f"Resulting data has {data.ndim} dimensions, but NIfTI supports maximum 4D"
        )

    # Now handle spatial reordering based on axes_order
    if self.axes_order == "ZYX":
        # Data spatial dimensions are in ZYX order, need to transpose to XYZ
        if data.ndim == 3:
            # Pure spatial data: ZYX -> XYZ
            data = data.transpose(2, 1, 0)
        elif data.ndim == 4:
            # 4D data with one non-spatial dimension remaining
            # Could be (T,Z,Y,X) or (C,Z,Y,X) - spatial part needs ZYX->XYZ
            # The non-spatial dimension stays first
            data = data.transpose(0, 3, 2, 1)

        # Get affine matrix in XYZ order
        affine_matrix = self.get_affine_matrix(axes_order="XYZ")
    else:
        # Data is already in XYZ order
        affine_matrix = self.get_affine_matrix(axes_order="XYZ")

    # Create NIfTI image
    nifti_img = nib.Nifti1Image(data, affine_matrix)

    if filename is not None:
        nib.save(nifti_img, filename)
        return filename
    else:
        return nifti_img

zarrnii.ZarrNii.to_tiff_stack(filename_pattern, channel=None, timepoint=None, compress=True, dtype='uint16', rescale=True)

Save data as a stack of 2D TIFF images.

Saves the image data as a series of 2D TIFF files, with each Z-slice saved as a separate file. This format is useful for compatibility with tools that don't support OME-Zarr or napari plugins that require individual TIFF files.

Parameters:

  • filename_pattern (str) –

    Output filename pattern. Should contain '{z:04d}' or similar format specifier for the Z-slice number. Examples: - "output_z{z:04d}.tif" - "data/slice_{z:03d}.tiff" If pattern doesn't contain format specifier, '_{z:04d}' is appended before the extension.

  • channel (Optional[int], default: None ) –

    Channel index to save (0-based). If None and data has multiple channels, all channels will be saved as separate channel dimensions in each TIFF file (multi-channel TIFFs).

  • timepoint (Optional[int], default: None ) –

    Timepoint index to save (0-based). If None and data has multiple timepoints, raises ValueError (must select single timepoint).

  • compress (bool, default: True ) –

    Whether to use LZW compression (default: True)

  • dtype (Optional[str], default: 'uint16' ) –

    Output data type for TIFF files. Options: - 'uint8': 8-bit unsigned integer (0-255) - 'uint16': 16-bit unsigned integer (0-65535) [default] - 'int16': 16-bit signed integer (-32768 to 32767) - 'float32': 32-bit float (preserves original data) Default 'uint16' provides good range and compatibility.

  • rescale (bool, default: True ) –

    Whether to rescale data to fit the output dtype range. If True, data is linearly scaled from [min, max] to the full range of the output dtype. If False, data is clipped to the output dtype range. Default: True

Returns:

  • str

    Base directory path where files were saved

Raises:

  • ValueError

    If data has multiple timepoints but none selected, or if selected channel/timepoint is out of range, or if dtype is not supported

  • OSError

    If unable to write to specified directory

Examples:

>>> # Save as 16-bit with auto-rescaling (default, recommended)
>>> znii.to_tiff_stack("output_z{z:04d}.tif")
>>> # Save as 8-bit for smaller file sizes
>>> znii.to_tiff_stack("output_z{z:04d}.tif", dtype='uint8')
>>> # Save specific channel without rescaling
>>> znii.to_tiff_stack("channel0_z{z:04d}.tif", channel=0, rescale=False)
>>> # Save as float32 to preserve original precision
>>> znii.to_tiff_stack("precise_z{z:04d}.tif", dtype='float32')
Notes
  • Z-dimension becomes the stack (file) dimension
  • Time and channel dimensions are handled as specified
  • Spatial transformations are not preserved in TIFF format
  • For 5D data (T,C,Z,Y,X), you must select a single timepoint
  • Multi-channel data can be saved as multi-channel TIFFs or selected
  • Data type conversion helps ensure compatibility with analysis tools
  • uint16 is recommended for most scientific applications (good range + compatibility)
Source code in zarrnii/core.py
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
def to_tiff_stack(
    self,
    filename_pattern: str,
    channel: Optional[int] = None,
    timepoint: Optional[int] = None,
    compress: bool = True,
    dtype: Optional[str] = "uint16",
    rescale: bool = True,
) -> str:
    """Save data as a stack of 2D TIFF images.

    Saves the image data as a series of 2D TIFF files, with each Z-slice
    saved as a separate file. This format is useful for compatibility with
    tools that don't support OME-Zarr or napari plugins that require
    individual TIFF files.

    Args:
        filename_pattern: Output filename pattern. Should contain '{z:04d}' or similar
            format specifier for the Z-slice number. Examples:
            - "output_z{z:04d}.tif"
            - "data/slice_{z:03d}.tiff"
            If pattern doesn't contain format specifier, '_{z:04d}' is appended
            before the extension.
        channel: Channel index to save (0-based). If None and data has multiple
            channels, all channels will be saved as separate channel dimensions
            in each TIFF file (multi-channel TIFFs).
        timepoint: Timepoint index to save (0-based). If None and data has multiple
            timepoints, raises ValueError (must select single timepoint).
        compress: Whether to use LZW compression (default: True)
        dtype: Output data type for TIFF files. Options:
            - 'uint8': 8-bit unsigned integer (0-255)
            - 'uint16': 16-bit unsigned integer (0-65535) [default]
            - 'int16': 16-bit signed integer (-32768 to 32767)
            - 'float32': 32-bit float (preserves original data)
            Default 'uint16' provides good range and compatibility.
        rescale: Whether to rescale data to fit the output dtype range.
            If True, data is linearly scaled from [min, max] to the full
            range of the output dtype. If False, data is clipped to the
            output dtype range. Default: True

    Returns:
        Base directory path where files were saved

    Raises:
        ValueError: If data has multiple timepoints but none selected,
            or if selected channel/timepoint is out of range,
            or if dtype is not supported
        OSError: If unable to write to specified directory

    Examples:
        >>> # Save as 16-bit with auto-rescaling (default, recommended)
        >>> znii.to_tiff_stack("output_z{z:04d}.tif")

        >>> # Save as 8-bit for smaller file sizes
        >>> znii.to_tiff_stack("output_z{z:04d}.tif", dtype='uint8')

        >>> # Save specific channel without rescaling
        >>> znii.to_tiff_stack("channel0_z{z:04d}.tif", channel=0, rescale=False)

        >>> # Save as float32 to preserve original precision
        >>> znii.to_tiff_stack("precise_z{z:04d}.tif", dtype='float32')

    Warnings:
        This method loads all data into memory. For large datasets,
        consider cropping or downsampling first to reduce memory usage.
        The cellseg3d napari plugin and similar tools work best with
        cropped regions rather than full-resolution whole-brain images.

    Notes:
        - Z-dimension becomes the stack (file) dimension
        - Time and channel dimensions are handled as specified
        - Spatial transformations are not preserved in TIFF format
        - For 5D data (T,C,Z,Y,X), you must select a single timepoint
        - Multi-channel data can be saved as multi-channel TIFFs or selected
        - Data type conversion helps ensure compatibility with analysis tools
        - uint16 is recommended for most scientific applications (good range + compatibility)
    """
    try:
        import tifffile
    except ImportError:
        raise ImportError(
            "tifffile is required for TIFF stack support. "
            "Install with: pip install tifffile"
        )

    # Get data and dimensions
    data = self.data.compute()
    dims = self.dims

    # Create output directory if needed
    import os

    output_dir = os.path.dirname(filename_pattern)
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Handle dimensional selection and validation
    # Remove singleton dimensions first, similar to to_nifti
    squeeze_axes = []
    remaining_dims = []
    time_dim_size = 1
    channel_dim_size = 1

    for i, dim in enumerate(dims):
        if dim == "t":
            time_dim_size = data.shape[i]
            if data.shape[i] == 1:
                squeeze_axes.append(i)
            elif timepoint is None:
                raise ValueError(
                    f"Data has {data.shape[i]} timepoints. "
                    f"Must specify 'timepoint' parameter to select a single timepoint."
                )
            elif timepoint >= data.shape[i]:
                raise ValueError(
                    f"Timepoint {timepoint} is out of range (data has {data.shape[i]} timepoints)"
                )
            else:
                remaining_dims.append(dim)
        elif dim == "c":
            channel_dim_size = data.shape[i]
            if data.shape[i] == 1:
                squeeze_axes.append(i)
            elif channel is None:
                raise ValueError(
                    f"Data has {data.shape[i]} channels. "
                    f"Must specify 'channel' parameter to select a single channel."
                )
            elif channel >= data.shape[i]:
                raise ValueError(
                    f"Channel {channel} is out of range (data has {data.shape[i]} channels)"
                )
            else:
                remaining_dims.append(dim)
        else:
            remaining_dims.append(dim)

    # Select specific timepoint if needed
    if time_dim_size > 1 and timepoint is not None:
        time_axis = dims.index("t")
        data = np.take(data, timepoint, axis=time_axis)
        # Update dims list
        dims = [d for i, d in enumerate(dims) if i != time_axis]

    # Select specific channel if needed
    if channel_dim_size > 1 and channel is not None:
        channel_axis = dims.index("c")
        data = np.take(data, channel, axis=channel_axis)
        # Update dims list
        dims = [d for i, d in enumerate(dims) if i != channel_axis]

    # Squeeze singleton dimensions
    if squeeze_axes:
        # Recalculate squeeze axes after potential dimension removal
        current_squeeze_axes = []
        for axis in squeeze_axes:
            # Count how many axes were removed before this one
            removed_before = sum(
                1
                for removed_axis in [
                    (
                        dims.index("t")
                        if time_dim_size > 1 and timepoint is not None
                        else -1
                    ),
                    (
                        dims.index("c")
                        if channel_dim_size > 1 and channel is not None
                        else -1
                    ),
                ]
                if removed_axis != -1 and removed_axis < axis
            )
            current_squeeze_axes.append(axis - removed_before)

        data = np.squeeze(data, axis=tuple(current_squeeze_axes))
        dims = [dim for i, dim in enumerate(dims) if i not in current_squeeze_axes]

    # Find Z dimension for stacking
    if "z" not in dims:
        raise ValueError("Data must have a Z dimension for TIFF stack export")

    z_axis = dims.index("z")
    z_size = data.shape[z_axis]

    # Check filename pattern contains format specifier
    if "{z" not in filename_pattern:
        # Add default z format before extension
        name, ext = os.path.splitext(filename_pattern)
        filename_pattern = f"{name}_{{z:04d}}{ext}"

    # Move Z axis to first position for easy iteration
    axes_order = list(range(data.ndim))
    axes_order[0], axes_order[z_axis] = axes_order[z_axis], axes_order[0]
    data = data.transpose(axes_order)

    # Handle data type conversion and rescaling
    supported_dtypes = {
        "uint8": np.uint8,
        "uint16": np.uint16,
        "int16": np.int16,
        "float32": np.float32,
    }

    if dtype not in supported_dtypes:
        raise ValueError(
            f"Unsupported dtype '{dtype}'. Supported types: {list(supported_dtypes.keys())}"
        )

    target_dtype = supported_dtypes[dtype]

    if rescale and dtype != "float32":
        # Get the data range
        data_min = np.min(data)
        data_max = np.max(data)

        if data_min == data_max:
            # Handle constant data case
            data_scaled = np.zeros_like(data, dtype=target_dtype)
        else:
            # Get target range for the dtype
            if dtype == "uint8":
                target_min, target_max = 0, 255
            elif dtype == "uint16":
                target_min, target_max = 0, 65535
            elif dtype == "int16":
                target_min, target_max = -32768, 32767

            # Linear rescaling: new_value = (value - data_min) * (target_max - target_min) / (data_max - data_min) + target_min
            data_scaled = (
                (data - data_min)
                * (target_max - target_min)
                / (data_max - data_min)
                + target_min
            ).astype(target_dtype)

        print(
            f"Rescaled data from [{data_min:.3f}, {data_max:.3f}] to {dtype} range"
        )
    else:
        # No rescaling - just clip and convert
        if dtype == "uint8":
            data_scaled = np.clip(data, 0, 255).astype(target_dtype)
        elif dtype == "uint16":
            data_scaled = np.clip(data, 0, 65535).astype(target_dtype)
        elif dtype == "int16":
            data_scaled = np.clip(data, -32768, 32767).astype(target_dtype)
        else:  # float32
            data_scaled = data.astype(target_dtype)

        if dtype != "float32":
            print(f"Converted data to {dtype} with clipping (no rescaling)")

    data = data_scaled

    # Save each Z-slice as a separate TIFF file
    compression = "lzw" if compress else None
    saved_files = []

    for z_idx in range(z_size):
        slice_data = data[z_idx]

        # Generate filename for this slice
        filename = filename_pattern.format(z=z_idx)

        # Save the 2D slice
        tifffile.imwrite(filename, slice_data, compression=compression)
        saved_files.append(filename)

    print(f"Saved {len(saved_files)} TIFF files to {output_dir or '.'}")
    print(
        f"Files: {os.path.basename(saved_files[0])} ... {os.path.basename(saved_files[-1])}"
    )

    return output_dir or "."

zarrnii.ZarrNii.from_imaris(path, level=0, timepoint=0, channel=0, chunks='auto', axes_order='ZYX', orientation='RAS') classmethod

Load from Imaris (.ims) file format.

Imaris files use HDF5 format with specific dataset structure. This method requires the 'imaris' extra dependency (h5py).

Parameters:

  • path (str) –

    Path to Imaris (.ims) file

  • level (int, default: 0 ) –

    Resolution level to load (0 = full resolution)

  • timepoint (int, default: 0 ) –

    Time point to load (default: 0)

  • channel (int, default: 0 ) –

    Channel to load (default: 0)

  • chunks (str, default: 'auto' ) –

    Chunking strategy for dask array

  • axes_order (str, default: 'ZYX' ) –

    Spatial axes order for compatibility (default: "ZYX")

  • orientation (str, default: 'RAS' ) –

    Default orientation (default: "RAS")

Returns:

  • 'ZarrNii'

    ZarrNii instance

Raises:

  • ImportError

    If h5py is not available

  • ValueError

    If the file is not a valid Imaris file

Source code in zarrnii/core.py
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
@classmethod
def from_imaris(
    cls,
    path: str,
    level: int = 0,
    timepoint: int = 0,
    channel: int = 0,
    chunks: str = "auto",
    axes_order: str = "ZYX",
    orientation: str = "RAS",
) -> "ZarrNii":
    """
    Load from Imaris (.ims) file format.

    Imaris files use HDF5 format with specific dataset structure.
    This method requires the 'imaris' extra dependency (h5py).

    Args:
        path: Path to Imaris (.ims) file
        level: Resolution level to load (0 = full resolution)
        timepoint: Time point to load (default: 0)
        channel: Channel to load (default: 0)
        chunks: Chunking strategy for dask array
        axes_order: Spatial axes order for compatibility (default: "ZYX")
        orientation: Default orientation (default: "RAS")

    Returns:
        ZarrNii instance

    Raises:
        ImportError: If h5py is not available
        ValueError: If the file is not a valid Imaris file
    """
    try:
        import h5py
    except ImportError:
        raise ImportError(
            "h5py is required for Imaris support. "
            "Install with: pip install zarrnii[imaris] or pip install h5py"
        )

    # Open Imaris file
    with h5py.File(path, "r") as f:
        # Verify it's an Imaris file by checking for standard structure
        if "DataSet" not in f:
            raise ValueError(
                f"File {path} does not appear to be a valid Imaris file (missing DataSet group)"
            )

        # Navigate to the specific dataset
        dataset_group = f["DataSet"]

        # Find available resolution levels
        resolution_levels = [
            key for key in dataset_group.keys() if key.startswith("ResolutionLevel")
        ]
        if not resolution_levels:
            raise ValueError("No resolution levels found in Imaris file")

        # Validate level parameter
        if level >= len(resolution_levels):
            raise ValueError(
                f"Level {level} not available. Available levels: 0-{len(resolution_levels)-1}"
            )

        # Navigate to specified resolution level
        res_level_key = f"ResolutionLevel {level}"
        if res_level_key not in dataset_group:
            raise ValueError(f"Resolution level {level} not found")

        res_group = dataset_group[res_level_key]

        # Find available timepoints
        timepoints = [
            key for key in res_group.keys() if key.startswith("TimePoint")
        ]
        if not timepoints:
            raise ValueError("No timepoints found in Imaris file")

        # Validate timepoint parameter
        if timepoint >= len(timepoints):
            raise ValueError(
                f"Timepoint {timepoint} not available. Available timepoints: 0-{len(timepoints)-1}"
            )

        # Navigate to specified timepoint
        time_key = f"TimePoint {timepoint}"
        if time_key not in res_group:
            raise ValueError(f"Timepoint {timepoint} not found")

        time_group = res_group[time_key]

        # Find available channels
        channels = [key for key in time_group.keys() if key.startswith("Channel")]
        if not channels:
            raise ValueError("No channels found in Imaris file")

        # Validate channel parameter
        if channel >= len(channels):
            raise ValueError(
                f"Channel {channel} not available. Available channels: 0-{len(channels)-1}"
            )

        # Navigate to specified channel
        channel_key = f"Channel {channel}"
        if channel_key not in time_group:
            raise ValueError(f"Channel {channel} not found")

        channel_group = time_group[channel_key]

        # Load the actual data
        if "Data" not in channel_group:
            raise ValueError("No Data dataset found in channel group")

        data_dataset = channel_group["Data"]

        # Load data into memory first (necessary because HDF5 file will be closed)
        data_numpy = data_dataset[:]

        # Create dask array from numpy array
        data_array = da.from_array(data_numpy, chunks=chunks)

        # Add channel dimension if not present
        if len(data_array.shape) == 3:
            data_array = data_array[np.newaxis, ...]

        # Extract spatial metadata
        # Try to get spacing information from Imaris metadata
        spacing = [1.0, 1.0, 1.0]  # Default spacing
        origin = [0.0, 0.0, 0.0]  # Default origin

        # Look for ImageSizeX, ImageSizeY, ImageSizeZ attributes
        try:
            # Navigate back to get image info
            if "ImageSizeX" in f.attrs:
                x_size = f.attrs["ImageSizeX"]
                y_size = f.attrs["ImageSizeY"]
                z_size = f.attrs["ImageSizeZ"]

                # Calculate spacing based on physical size and voxel count
                if data_array.shape[-1] > 0:  # X dimension
                    spacing[0] = x_size / data_array.shape[-1]
                if data_array.shape[-2] > 0:  # Y dimension
                    spacing[1] = y_size / data_array.shape[-2]
                if data_array.shape[-3] > 0:  # Z dimension
                    spacing[2] = z_size / data_array.shape[-3]
        except (KeyError, IndexError):
            # Use default spacing if metadata is not available
            pass

        # Create dimensions
        dims = ["c"] + list(axes_order.lower())

        # Create scale and translation dictionaries
        scale_dict = {}
        translation_dict = {}
        spatial_dims = ["z", "y", "x"] if axes_order == "ZYX" else ["x", "y", "z"]

        for i, dim in enumerate(spatial_dims):
            scale_dict[dim] = spacing[i]
            translation_dict[dim] = origin[i]

        # Create NgffImage
        ngff_image = nz.NgffImage(
            data=data_array,
            dims=dims,
            scale=scale_dict,
            translation=translation_dict,
            name=f"imaris_image_{path}_{level}_{timepoint}_{channel}",
        )

    # Create and return ZarrNii instance
    return cls(
        ngff_image=ngff_image,
        axes_order=axes_order,
        xyz_orientation=orientation,
        _omero=None,
    )

zarrnii.ZarrNii.to_imaris(path, compression='gzip', compression_opts=6)

Save to Imaris (.ims) file format using HDF5.

This method creates Imaris files compatible with Imaris software by following the exact HDF5 structure from correctly-formed reference files. All attributes use byte-array encoding as required by Imaris.

Parameters:

  • path (str) –

    Output path for Imaris (.ims) file

  • compression (str, default: 'gzip' ) –

    HDF5 compression method (default: "gzip")

  • compression_opts (int, default: 6 ) –

    Compression level (default: 6)

Returns:

  • str ( str ) –

    Path to the saved file

Raises:

  • ImportError

    If h5py is not available

Source code in zarrnii/core.py
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
def to_imaris(
    self, path: str, compression: str = "gzip", compression_opts: int = 6
) -> str:
    """
    Save to Imaris (.ims) file format using HDF5.

    This method creates Imaris files compatible with Imaris software by
    following the exact HDF5 structure from correctly-formed reference files.
    All attributes use byte-array encoding as required by Imaris.

    Args:
        path: Output path for Imaris (.ims) file
        compression: HDF5 compression method (default: "gzip")
        compression_opts: Compression level (default: 6)

    Returns:
        str: Path to the saved file

    Raises:
        ImportError: If h5py is not available
    """
    try:
        import h5py
    except ImportError:
        raise ImportError(
            "h5py is required for Imaris support. "
            "Install with: pip install zarrnii[imaris] or pip install h5py"
        )

    # Ensure path has .ims extension
    if not path.endswith(".ims"):
        path = path + ".ims"

    def _string_to_byte_array(s: str) -> np.ndarray:
        """Convert string to byte array as required by Imaris."""
        return np.array([c.encode() for c in s])

    # Get data and metadata
    if hasattr(self.darr, "compute"):
        data = self.darr.compute()  # Convert Dask array to numpy array
    else:
        data = np.asarray(self.darr)  # Handle numpy arrays directly

    # Handle dimensions: expect ZYX or CZYX
    if len(data.shape) == 4:
        # CZYX format
        n_channels = data.shape[0]
        z, y, x = data.shape[1:]
    elif len(data.shape) == 3:
        # ZYX format - single channel
        n_channels = 1
        z, y, x = data.shape
        data = data[np.newaxis, ...]  # Add channel dimension
    else:
        raise ValueError(
            f"Unsupported data shape: {data.shape}. Expected 3D (ZYX) or 4D (CZYX)"
        )

    # Create Imaris file structure exactly matching reference file
    with h5py.File(path, "w") as f:
        # Root attributes - use exact byte array format from reference
        f.attrs["DataSetDirectoryName"] = _string_to_byte_array("DataSet")
        f.attrs["DataSetInfoDirectoryName"] = _string_to_byte_array("DataSetInfo")
        f.attrs["ImarisDataSet"] = _string_to_byte_array("ImarisDataSet")
        f.attrs["ImarisVersion"] = _string_to_byte_array("5.5.0")
        f.attrs["NumberOfDataSets"] = np.array([1], dtype=np.uint32)
        f.attrs["ThumbnailDirectoryName"] = _string_to_byte_array("Thumbnail")

        # Create main DataSet group structure
        dataset_group = f.create_group("DataSet")
        res_group = dataset_group.create_group("ResolutionLevel 0")
        time_group = res_group.create_group("TimePoint 0")

        # Create channels with proper attributes
        for c in range(n_channels):
            channel_group = time_group.create_group(f"Channel {c}")
            channel_data = data[c]  # (Z, Y, X)

            # Channel attributes - use byte array format exactly like reference
            channel_group.attrs["ImageSizeX"] = _string_to_byte_array(str(x))
            channel_group.attrs["ImageSizeY"] = _string_to_byte_array(str(y))
            channel_group.attrs["ImageSizeZ"] = _string_to_byte_array(str(z))
            channel_group.attrs["ImageBlockSizeX"] = _string_to_byte_array(str(x))
            channel_group.attrs["ImageBlockSizeY"] = _string_to_byte_array(str(y))
            channel_group.attrs["ImageBlockSizeZ"] = _string_to_byte_array(
                str(min(z, 16))
            )

            # Histogram range attributes
            data_min, data_max = float(channel_data.min()), float(
                channel_data.max()
            )
            channel_group.attrs["HistogramMin"] = _string_to_byte_array(
                f"{data_min:.3f}"
            )
            channel_group.attrs["HistogramMax"] = _string_to_byte_array(
                f"{data_max:.3f}"
            )

            # Create data dataset with proper compression
            # Preserve original data type but ensure it's compatible with Imaris
            if channel_data.dtype == np.float32 or channel_data.dtype == np.float64:
                # Keep float data as is for round-trip compatibility
                data_for_storage = channel_data.astype(np.float32)
            elif channel_data.dtype in [np.uint16, np.int16]:
                # Keep 16-bit data as is
                data_for_storage = channel_data
            else:
                # Convert other types to uint8
                data_for_storage = channel_data.astype(np.uint8)

            channel_group.create_dataset(
                "Data",
                data=data_for_storage,
                compression=compression,
                compression_opts=compression_opts,
                chunks=True,
            )

            # Create histogram
            hist_data, _ = np.histogram(
                channel_data.flatten(), bins=256, range=(data_min, data_max)
            )
            channel_group.create_dataset(
                "Histogram", data=hist_data.astype(np.uint64)
            )

        # Get spacing directly from scale dictionary with proper XYZ order
        try:
            # Extract voxel sizes directly from ngff_image scale dictionary
            # This ensures we get X, Y, Z in the correct order regardless of axes_order
            sx = self.ngff_image.scale.get("x", 1.0)
            sy = self.ngff_image.scale.get("y", 1.0)
            sz = self.ngff_image.scale.get("z", 1.0)
        except:
            sx = sy = sz = 1.0

        # Calculate extents (physical coordinates)
        ext_x = sx * x
        ext_y = sy * y
        ext_z = sz * z

        # Create comprehensive DataSetInfo structure matching reference
        info_group = f.create_group("DataSetInfo")

        # Create channel info groups
        for c in range(n_channels):
            channel_info = info_group.create_group(f"Channel {c}")

            # Essential channel attributes in byte array format
            channel_info.attrs["Color"] = _string_to_byte_array(
                "1.000 0.000 0.000"
                if c == 0
                else f"0.000 {1.0 if c == 1 else 0.0:.3f} {1.0 if c == 2 else 0.0:.3f}"
            )
            channel_info.attrs["Name"] = _string_to_byte_array(f"Channel {c}")
            channel_info.attrs["ColorMode"] = _string_to_byte_array("BaseColor")
            channel_info.attrs["ColorOpacity"] = _string_to_byte_array("1.000")
            channel_info.attrs["ColorRange"] = _string_to_byte_array("0 255")
            channel_info.attrs["GammaCorrection"] = _string_to_byte_array("1.000")
            channel_info.attrs["LSMEmissionWavelength"] = _string_to_byte_array(
                "500"
            )
            channel_info.attrs["LSMExcitationWavelength"] = _string_to_byte_array(
                "500"
            )
            channel_info.attrs["LSMPhotons"] = _string_to_byte_array("1")
            channel_info.attrs["LSMPinhole"] = _string_to_byte_array("0")

            # Add description
            description = f"Channel {c} created by ZarrNii"
            channel_info.attrs["Description"] = _string_to_byte_array(description)

        # Create CRITICAL Image group with voxel size information (this was missing!)
        image_info = info_group.create_group("Image")

        # Add essential image metadata with proper voxel size information
        image_info.attrs["X"] = _string_to_byte_array(str(x))
        image_info.attrs["Y"] = _string_to_byte_array(str(y))
        image_info.attrs["Z"] = _string_to_byte_array(str(z))
        image_info.attrs["Unit"] = _string_to_byte_array("um")
        image_info.attrs["Noc"] = _string_to_byte_array(str(n_channels))

        # CRITICAL: Set proper physical extents that define voxel size
        # Imaris reads voxel size from these extent values
        image_info.attrs["ExtMin0"] = _string_to_byte_array(f"{-ext_x/2:.3f}")
        image_info.attrs["ExtMax0"] = _string_to_byte_array(f"{ext_x/2:.3f}")
        image_info.attrs["ExtMin1"] = _string_to_byte_array(f"{-ext_y/2:.3f}")
        image_info.attrs["ExtMax1"] = _string_to_byte_array(f"{ext_y/2:.3f}")
        image_info.attrs["ExtMin2"] = _string_to_byte_array(f"{-ext_z/2:.3f}")
        image_info.attrs["ExtMax2"] = _string_to_byte_array(f"{ext_z/2:.3f}")

        # Add device/acquisition metadata
        image_info.attrs["ManufactorString"] = _string_to_byte_array("ZarrNii")
        image_info.attrs["ManufactorType"] = _string_to_byte_array("Generic")
        image_info.attrs["LensPower"] = _string_to_byte_array("")
        image_info.attrs["NumericalAperture"] = _string_to_byte_array("")
        image_info.attrs["RecordingDate"] = _string_to_byte_array(
            "2024-01-01 00:00:00.000"
        )
        image_info.attrs["Filename"] = _string_to_byte_array(path.split("/")[-1])
        image_info.attrs["Name"] = _string_to_byte_array("ZarrNii Export")
        image_info.attrs["Compression"] = _string_to_byte_array("5794")

        # Add description
        description = (
            f"Imaris file created by ZarrNii from {self.axes_order} format data. "
            f"Original shape: {self.darr.shape}. Converted to Imaris format "
            f"with {n_channels} channel(s) and dimensions {z}x{y}x{x}. "
            f"Voxel size: {sx:.3f} x {sy:.3f} x {sz:.3f} um."
        )
        image_info.attrs["Description"] = _string_to_byte_array(description)

        # Create Imaris metadata group
        imaris_info = info_group.create_group("Imaris")
        imaris_info.attrs["Version"] = _string_to_byte_array("7.0")
        imaris_info.attrs["ThumbnailMode"] = _string_to_byte_array("thumbnailMIP")
        imaris_info.attrs["ThumbnailSize"] = _string_to_byte_array("256")

        # Create ImarisDataSet metadata
        dataset_info = info_group.create_group("ImarisDataSet")
        dataset_info.attrs["Creator"] = _string_to_byte_array("Imaris")
        dataset_info.attrs["Version"] = _string_to_byte_array("7.0")
        dataset_info.attrs["NumberOfImages"] = _string_to_byte_array("1")

        # Add version-specific groups as seen in reference
        dataset_info_ver = info_group.create_group("ImarisDataSet       0.0.0")
        dataset_info_ver.attrs["NumberOfImages"] = _string_to_byte_array("1")
        dataset_info_ver2 = info_group.create_group("ImarisDataSet      0.0.0")
        dataset_info_ver2.attrs["NumberOfImages"] = _string_to_byte_array("1")

        # Create TimeInfo group
        time_info = info_group.create_group("TimeInfo")
        time_info.attrs["DatasetTimePoints"] = _string_to_byte_array("1")
        time_info.attrs["FileTimePoints"] = _string_to_byte_array("1")
        time_info.attrs["TimePoint1"] = _string_to_byte_array(
            "2024-01-01 00:00:00.000"
        )

        # Create Log group (basic processing log)
        log_group = info_group.create_group("Log")
        log_group.attrs["Entries"] = _string_to_byte_array("1")
        log_group.attrs["Entry0"] = _string_to_byte_array(
            f"<ZarrNiiExport channels=\"{' '.join(['on'] * n_channels)}\"/>"
        )

        # Create thumbnail group with proper multi-channel thumbnail
        thumbnail_group = f.create_group("Thumbnail")

        # Create a combined thumbnail (256x1024 for multi-channel as in reference)
        if n_channels > 1:
            # Multi-channel thumbnail: concatenate channels horizontally
            thumb_width = 256 * n_channels
            thumbnail_data = np.zeros((256, thumb_width), dtype=np.uint8)

            for c in range(n_channels):
                # Downsample each channel to 256x256
                channel_data = data[c]
                # Take MIP (Maximum Intensity Projection) along Z
                mip = np.max(channel_data, axis=0)
                # Resize to 256x256 (simple decimation)
                step_y = max(1, mip.shape[0] // 256)
                step_x = max(1, mip.shape[1] // 256)
                thumb_channel = mip[::step_y, ::step_x]

                # Pad or crop to exactly 256x256
                if thumb_channel.shape[0] < 256 or thumb_channel.shape[1] < 256:
                    padded = np.zeros((256, 256), dtype=thumb_channel.dtype)
                    h, w = thumb_channel.shape
                    padded[:h, :w] = thumb_channel
                    thumb_channel = padded
                else:
                    thumb_channel = thumb_channel[:256, :256]

                # Place in thumbnail
                thumbnail_data[:, c * 256 : (c + 1) * 256] = thumb_channel
        else:
            # Single channel: 256x256 thumbnail
            channel_data = data[0]
            mip = np.max(channel_data, axis=0)
            step_y = max(1, mip.shape[0] // 256)
            step_x = max(1, mip.shape[1] // 256)
            thumbnail_data = mip[::step_y, ::step_x]

            if thumbnail_data.shape[0] < 256 or thumbnail_data.shape[1] < 256:
                padded = np.zeros((256, 256), dtype=thumbnail_data.dtype)
                h, w = thumbnail_data.shape
                padded[:h, :w] = thumbnail_data
                thumbnail_data = padded
            else:
                thumbnail_data = thumbnail_data[:256, :256]

        thumbnail_group.create_dataset("Data", data=thumbnail_data.astype(np.uint8))

    return path

zarrnii.ZarrNii.copy()

Create a copy of this ZarrNii.

Returns:

  • 'ZarrNii'

    New ZarrNii with copied data

Source code in zarrnii/core.py
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
def copy(self) -> "ZarrNii":
    """
    Create a copy of this ZarrNii.

    Returns:
        New ZarrNii with copied data
    """
    # Create a new NgffImage with the same properties
    copied_image = nz.NgffImage(
        data=self.ngff_image.data,  # Dask arrays are lazy so this is efficient
        dims=self.ngff_image.dims.copy(),
        scale=self.ngff_image.scale.copy(),
        translation=self.ngff_image.translation.copy(),
        name=self.ngff_image.name,
    )
    return ZarrNii(
        ngff_image=copied_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        _omero=self._omero,
    )

zarrnii.ZarrNii.compute()

Compute the dask array and return the underlying NgffImage.

This triggers computation of any lazy operations and returns the NgffImage with computed data.

Returns:

  • NgffImage

    NgffImage with computed data

Source code in zarrnii/core.py
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
def compute(self) -> nz.NgffImage:
    """
    Compute the dask array and return the underlying NgffImage.

    This triggers computation of any lazy operations and returns
    the NgffImage with computed data.

    Returns:
        NgffImage with computed data
    """
    computed_data = self.ngff_image.data.compute()

    # Create new NgffImage with computed data
    computed_image = nz.NgffImage(
        data=computed_data,
        dims=self.ngff_image.dims,
        scale=self.ngff_image.scale,
        translation=self.ngff_image.translation,
        name=self.ngff_image.name,
    )
    return computed_image

zarrnii.ZarrNii.get_orientation()

Get the anatomical orientation of the dataset.

This function returns the orientation string (e.g., 'RAS', 'LPI') of the dataset.

Returns:

  • str ( str ) –

    The orientation string corresponding to the dataset's anatomical orientation.

Source code in zarrnii/core.py
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
def get_orientation(self) -> str:
    """
    Get the anatomical orientation of the dataset.

    This function returns the orientation string (e.g., 'RAS', 'LPI') of the dataset.

    Returns:
        str: The orientation string corresponding to the dataset's anatomical orientation.
    """
    return self.orientation

zarrnii.ZarrNii.get_zooms(axes_order=None)

Get voxel spacing (zooms) from NgffImage scale.

Parameters:

  • axes_order (str, default: None ) –

    Spatial axes order, defaults to self.axes_order

Returns:

  • ndarray

    Array of voxel spacings

Source code in zarrnii/core.py
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
def get_zooms(self, axes_order: str = None) -> np.ndarray:
    """
    Get voxel spacing (zooms) from NgffImage scale.

    Args:
        axes_order: Spatial axes order, defaults to self.axes_order

    Returns:
        Array of voxel spacings
    """
    if axes_order is None:
        axes_order = self.axes_order

    spatial_dims = ["z", "y", "x"] if axes_order == "ZYX" else ["x", "y", "z"]
    zooms = []

    for dim in spatial_dims:
        if dim in self.ngff_image.scale:
            zooms.append(self.ngff_image.scale[dim])
        else:
            zooms.append(1.0)

    return np.array(zooms)

zarrnii.ZarrNii.get_origin(axes_order=None)

Get origin (translation) from NgffImage.

Parameters:

  • axes_order (str, default: None ) –

    Spatial axes order, defaults to self.axes_order

Returns:

  • ndarray

    Array of origin coordinates

Source code in zarrnii/core.py
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
def get_origin(self, axes_order: str = None) -> np.ndarray:
    """
    Get origin (translation) from NgffImage.

    Args:
        axes_order: Spatial axes order, defaults to self.axes_order

    Returns:
        Array of origin coordinates
    """
    if axes_order is None:
        axes_order = self.axes_order

    spatial_dims = ["z", "y", "x"] if axes_order == "ZYX" else ["x", "y", "z"]
    origin = []

    for dim in spatial_dims:
        if dim in self.ngff_image.translation:
            origin.append(self.ngff_image.translation[dim])
        else:
            origin.append(0.0)

    return np.array(origin)

zarrnii.ZarrNii.get_affine_matrix(axes_order=None)

Construct a 4x4 affine matrix from NGFF metadata (scale/translation), and align it to self.orientation (if provided) using nibabel.orientations.

Parameters:

  • axes_order (str, default: None ) –

    Spatial axes order, e.g. 'ZYX' or 'XYZ'. Defaults to 'XYZ'.

Returns:

  • ndarray

    np.ndarray: 4x4 affine matrix.

Source code in zarrnii/core.py
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
def get_affine_matrix(self, axes_order: str = None) -> np.ndarray:
    """
    Construct a 4x4 affine matrix from NGFF metadata (scale/translation),
    and align it to self.orientation (if provided) using nibabel.orientations.

    Args:
        axes_order: Spatial axes order, e.g. 'ZYX' or 'XYZ'. Defaults to 'XYZ'.

    Returns:
        np.ndarray: 4x4 affine matrix.
    """
    if axes_order is None:
        axes_order = self.axes_order

    if axes_order == "ZYX":
        orientation = reverse_orientation_string(self.orientation)
    else:
        orientation = self.orientation

    # Safely pull scale/translation from metadata (dict-like expected)
    scale_meta = getattr(self.ngff_image, "scale", {}) or {}
    trans_meta = getattr(self.ngff_image, "translation", {}) or {}

    scale = np.ones(
        3,
    )
    trans = np.zeros(
        3,
    )

    for i, dim in enumerate(axes_order):
        s = scale_meta.get(dim.lower())
        if s is not None:
            scale[i] = float(s)

    for i, dim in enumerate(axes_order):
        s = trans_meta.get(dim.lower())
        if s is not None:
            trans[i] = float(s)

    affine = _axcodes2aff(orientation, scale=scale, translate=trans)

    return affine

zarrnii.ZarrNii.apply_transform_ref_to_flo_indices(*transforms, ref_znimg, indices)

Transform indices from reference to floating space.

Source code in zarrnii/core.py
3877
3878
3879
3880
def apply_transform_ref_to_flo_indices(self, *transforms, ref_znimg, indices):
    """Transform indices from reference to floating space."""
    # Placeholder implementation - would need full transform logic
    return indices

zarrnii.ZarrNii.apply_transform_flo_to_ref_indices(*transforms, ref_znimg, indices)

Transform indices from floating to reference space.

Source code in zarrnii/core.py
3882
3883
3884
3885
def apply_transform_flo_to_ref_indices(self, *transforms, ref_znimg, indices):
    """Transform indices from floating to reference space."""
    # Placeholder implementation - would need full transform logic
    return indices

zarrnii.ZarrNii.list_channels()

Get list of available channel labels from OMERO metadata.

Extracts channel labels from OMERO metadata if available, providing human-readable names for multi-channel datasets.

Returns:

  • List[str]

    List of channel label strings. Empty list if no OMERO metadata

  • List[str]

    is available or no channels are defined.

Examples:

>>> # Check available channels
>>> labels = znii.list_channels()
>>> print(f"Available channels: {labels}")
>>> # ['DAPI', 'GFP', 'RFP', 'Cy5']
>>> # Select specific channels by label
>>> selected = znii.select_channels(channel_labels=['DAPI', 'GFP'])
Notes
  • Requires OMERO metadata to be present in the dataset
  • Returns empty list for datasets without channel metadata
  • Labels are extracted from the 'label' field of each channel
Source code in zarrnii/core.py
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
def list_channels(self) -> List[str]:
    """Get list of available channel labels from OMERO metadata.

    Extracts channel labels from OMERO metadata if available, providing
    human-readable names for multi-channel datasets.

    Returns:
        List of channel label strings. Empty list if no OMERO metadata
        is available or no channels are defined.

    Examples:
        >>> # Check available channels
        >>> labels = znii.list_channels()
        >>> print(f"Available channels: {labels}")
        >>> # ['DAPI', 'GFP', 'RFP', 'Cy5']

        >>> # Select specific channels by label
        >>> selected = znii.select_channels(channel_labels=['DAPI', 'GFP'])

    Notes:
        - Requires OMERO metadata to be present in the dataset
        - Returns empty list for datasets without channel metadata
        - Labels are extracted from the 'label' field of each channel
    """
    if self.omero is None or not hasattr(self.omero, "channels"):
        return []

    return [
        ch.label if hasattr(ch, "label") else ch.get("label", "")
        for ch in self.omero.channels
    ]

zarrnii.ZarrNii.select_channels(channels=None, channel_labels=None)

Select specific channels from multi-channel image data.

Creates a new ZarrNii instance containing only the specified channels, reducing memory usage and focusing analysis on channels of interest. Supports selection by both numeric indices and human-readable labels.

Parameters:

  • channels (Optional[List[int]], default: None ) –

    List of 0-based channel indices to select. Mutually exclusive with channel_labels

  • channel_labels (Optional[List[str]], default: None ) –

    List of channel names to select by label. Requires OMERO metadata. Mutually exclusive with channels

Returns:

  • 'ZarrNii'

    New ZarrNii instance with selected channels and updated metadata

Raises:

  • ValueError

    If both channels and channel_labels specified, or if channel_labels used without OMERO metadata, or if labels not found

  • IndexError

    If channel indices are out of range

Examples:

>>> # Select channels by index
>>> selected = znii.select_channels(channels=[0, 2])
>>> # Select channels by label (requires OMERO metadata)
>>> selected = znii.select_channels(channel_labels=['DAPI', 'GFP'])
>>> # Check available labels first
>>> available = znii.list_channels()
>>> print(f"Available: {available}")
>>> selected = znii.select_channels(channel_labels=available[:2])
Notes
  • Preserves all spatial dimensions and timepoints
  • Updates OMERO metadata to reflect selected channels
  • Maintains spatial transformations and other metadata
  • Channel order in output matches selection order
Source code in zarrnii/core.py
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
def select_channels(
    self,
    channels: Optional[List[int]] = None,
    channel_labels: Optional[List[str]] = None,
) -> "ZarrNii":
    """Select specific channels from multi-channel image data.

    Creates a new ZarrNii instance containing only the specified channels,
    reducing memory usage and focusing analysis on channels of interest.
    Supports selection by both numeric indices and human-readable labels.

    Args:
        channels: List of 0-based channel indices to select.
            Mutually exclusive with channel_labels
        channel_labels: List of channel names to select by label.
            Requires OMERO metadata. Mutually exclusive with channels

    Returns:
        New ZarrNii instance with selected channels and updated metadata

    Raises:
        ValueError: If both channels and channel_labels specified, or if
            channel_labels used without OMERO metadata, or if labels not found
        IndexError: If channel indices are out of range

    Examples:
        >>> # Select channels by index
        >>> selected = znii.select_channels(channels=[0, 2])

        >>> # Select channels by label (requires OMERO metadata)
        >>> selected = znii.select_channels(channel_labels=['DAPI', 'GFP'])

        >>> # Check available labels first
        >>> available = znii.list_channels()
        >>> print(f"Available: {available}")
        >>> selected = znii.select_channels(channel_labels=available[:2])

    Notes:
        - Preserves all spatial dimensions and timepoints
        - Updates OMERO metadata to reflect selected channels
        - Maintains spatial transformations and other metadata
        - Channel order in output matches selection order
    """
    if channels is not None and channel_labels is not None:
        raise ValueError("Cannot specify both 'channels' and 'channel_labels'")

    if channel_labels is not None:
        if self.omero is None:
            raise ValueError(
                "Channel labels were specified but no omero metadata found"
            )

        available_labels = self.list_channels()
        channel_indices = []
        for label in channel_labels:
            if label not in available_labels:
                raise ValueError(f"Channel label '{label}' not found")
            channel_indices.append(available_labels.index(label))
        channels = channel_indices

    if channels is None:
        # Return a copy with all channels
        return self.copy()

    # Check if channel dimension exists
    if "c" not in self.dims:
        raise ValueError("No channel dimension found in the data")

    # Get channel dimension index
    c_idx = self.dims.index("c")

    # Create slice objects for proper dimension indexing
    slices = [slice(None)] * len(self.data.shape)
    slices[c_idx] = channels

    # Select channels from data using proper dimension indexing
    selected_data = self.data[tuple(slices)]

    # Create new NgffImage with selected data
    new_ngff_image = nz.NgffImage(
        data=selected_data,
        dims=self.dims,
        scale=self.scale,
        translation=self.translation,
        name=self.name,
    )

    # Filter omero metadata to match selected channels
    filtered_omero = None
    if self.omero is not None and hasattr(self.omero, "channels"):

        class FilteredOmero:
            def __init__(self, channels):
                self.channels = channels

        filtered_channels = [self.omero.channels[i] for i in channels]
        filtered_omero = FilteredOmero(filtered_channels)

    return ZarrNii(
        ngff_image=new_ngff_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        _omero=filtered_omero,
    )

zarrnii.ZarrNii.select_timepoints(timepoints=None)

Select timepoints from the image data and return a new ZarrNii instance.

Parameters:

  • timepoints (Optional[List[int]], default: None ) –

    Timepoint indices to select

Returns:

  • 'ZarrNii'

    New ZarrNii instance with selected timepoints

Source code in zarrnii/core.py
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
def select_timepoints(self, timepoints: Optional[List[int]] = None) -> "ZarrNii":
    """
    Select timepoints from the image data and return a new ZarrNii instance.

    Args:
        timepoints: Timepoint indices to select

    Returns:
        New ZarrNii instance with selected timepoints
    """
    if timepoints is None:
        # Return a copy with all timepoints
        return self.copy()

    # Check if time dimension exists
    if "t" not in self.dims:
        raise ValueError("No time dimension found in the data")

    # Get time dimension index
    t_idx = self.dims.index("t")

    # Create slice objects
    slices = [slice(None)] * len(self.data.shape)
    slices[t_idx] = timepoints

    # Select timepoints from data
    selected_data = self.data[tuple(slices)]

    # Create new NgffImage with selected data
    new_ngff_image = nz.NgffImage(
        data=selected_data,
        dims=self.dims,
        scale=self.scale,
        translation=self.translation,
        name=self.name,
    )

    return ZarrNii(
        ngff_image=new_ngff_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
        _omero=self._omero,  # Timepoint selection doesn't affect omero metadata
    )

zarrnii.ZarrNii.to_ngff_image(name=None)

Convert to NgffImage object.

Parameters:

  • name (str, default: None ) –

    Optional name for the image

Returns:

  • NgffImage

    NgffImage representation

Source code in zarrnii/core.py
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
def to_ngff_image(self, name: str = None) -> nz.NgffImage:
    """
    Convert to NgffImage object.

    Args:
        name: Optional name for the image

    Returns:
        NgffImage representation
    """
    if name is None:
        name = self.name

    return nz.NgffImage(
        data=self.data,
        dims=self.dims,
        scale=self.scale,
        translation=self.translation,
        name=name,
    )

zarrnii.ZarrNii.segment(plugin, chunk_size=None, **kwargs)

Apply segmentation plugin to the image using blockwise processing.

This method applies a segmentation plugin to the image data using dask's blockwise processing for efficient computation on large datasets.

Parameters:

  • plugin

    Segmentation plugin instance or class to apply

  • chunk_size (Optional[Tuple[int, ...]], default: None ) –

    Optional chunk size for dask processing. If None, uses current chunks.

  • **kwargs

    Additional arguments passed to the plugin

Returns:

  • 'ZarrNii'

    New ZarrNii instance with segmented data as labels

Source code in zarrnii/core.py
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
def segment(
    self, plugin, chunk_size: Optional[Tuple[int, ...]] = None, **kwargs
) -> "ZarrNii":
    """
    Apply segmentation plugin to the image using blockwise processing.

    This method applies a segmentation plugin to the image data using dask's
    blockwise processing for efficient computation on large datasets.

    Args:
        plugin: Segmentation plugin instance or class to apply
        chunk_size: Optional chunk size for dask processing. If None, uses current chunks.
        **kwargs: Additional arguments passed to the plugin

    Returns:
        New ZarrNii instance with segmented data as labels
    """
    from .plugins.segmentation import SegmentationPlugin

    # Handle plugin instance or class
    if isinstance(plugin, type) and issubclass(plugin, SegmentationPlugin):
        plugin = plugin(**kwargs)
    elif not isinstance(plugin, SegmentationPlugin):
        raise TypeError(
            "Plugin must be an instance or subclass of SegmentationPlugin"
        )

    # Prepare chunk size
    if chunk_size is not None:
        # Rechunk the data if different chunk size requested
        data = self.data.rechunk(chunk_size)
    else:
        data = self.data

    # Create metadata dict to pass to plugin
    metadata = {
        "axes_order": self.axes_order,
        "orientation": self.xyz_orientation,
        "shape": self.shape,
        "dims": self.dims,
        "scale": self.scale,
        "translation": self.translation,
    }

    # Create a wrapper function for map_blocks
    def segment_block(block):
        """Wrapper function to apply segmentation to a single block."""
        # Handle single blocks
        return plugin.segment(block, metadata)

    # Apply segmentation using dask map_blocks
    segmented_data = da.map_blocks(
        segment_block,
        data,
        dtype=np.uint8,  # Segmentation results are typically uint8
        meta=np.array([], dtype=np.uint8),  # Provide meta information
    )

    # Create new NgffImage with segmented data
    new_ngff_image = nz.NgffImage(
        data=segmented_data,
        dims=self.dims.copy(),
        scale=self.scale.copy(),
        translation=self.translation.copy(),
        name=f"{self.name}_segmented_{plugin.name.lower().replace(' ', '_')}",
    )

    # Return new ZarrNii instance
    return ZarrNii(
        ngff_image=new_ngff_image,
        axes_order=self.axes_order,
        xyz_orientation=self.xyz_orientation,
    )

zarrnii.ZarrNii.segment_otsu(nbins=256, chunk_size=None)

Apply local Otsu thresholding segmentation to the image.

Convenience method for local Otsu thresholding segmentation. This computes the threshold locally for each processing block.

Parameters:

  • nbins (int, default: 256 ) –

    Number of bins for histogram computation (default: 256)

  • chunk_size (Optional[Tuple[int, ...]], default: None ) –

    Optional chunk size for dask processing

Returns:

  • 'ZarrNii'

    New ZarrNii instance with binary segmentation

Source code in zarrnii/core.py
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
def segment_otsu(
    self, nbins: int = 256, chunk_size: Optional[Tuple[int, ...]] = None
) -> "ZarrNii":
    """
    Apply local Otsu thresholding segmentation to the image.

    Convenience method for local Otsu thresholding segmentation.
    This computes the threshold locally for each processing block.

    Args:
        nbins: Number of bins for histogram computation (default: 256)
        chunk_size: Optional chunk size for dask processing

    Returns:
        New ZarrNii instance with binary segmentation
    """
    from .plugins.segmentation import LocalOtsuSegmentation

    plugin = LocalOtsuSegmentation(nbins=nbins)
    return self.segment(plugin, chunk_size=chunk_size)

zarrnii.ZarrNii.segment_threshold(thresholds, inclusive=True, chunk_size=None)

Apply threshold-based segmentation to the image.

Convenience method for threshold-based segmentation using either manual threshold values or computed thresholds.

Parameters:

  • thresholds (Union[float, List[float]]) –

    Single threshold value or list of threshold values. For single threshold, creates binary segmentation (0/1). For multiple thresholds, creates multi-class segmentation (0/1/2/...).

  • inclusive (bool, default: True ) –

    Whether thresholds are inclusive (default: True). If True, pixels >= threshold are labeled as foreground. If False, pixels > threshold are labeled as foreground.

  • chunk_size (Optional[Tuple[int, ...]], default: None ) –

    Optional chunk size for dask processing

Returns:

  • 'ZarrNii'

    New ZarrNii instance with labeled segmentation

Examples:

>>> # Binary threshold segmentation
>>> segmented = znimg.segment_threshold(0.5)
>>>
>>> # Multi-level threshold segmentation
>>> thresholds = znimg.compute_otsu_thresholds(classes=3)
>>> segmented = znimg.segment_threshold(thresholds[1:-1])  # Exclude min/max values
Source code in zarrnii/core.py
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
def segment_threshold(
    self,
    thresholds: Union[float, List[float]],
    inclusive: bool = True,
    chunk_size: Optional[Tuple[int, ...]] = None,
) -> "ZarrNii":
    """
    Apply threshold-based segmentation to the image.

    Convenience method for threshold-based segmentation using either
    manual threshold values or computed thresholds.

    Args:
        thresholds: Single threshold value or list of threshold values.
            For single threshold, creates binary segmentation (0/1).
            For multiple thresholds, creates multi-class segmentation (0/1/2/...).
        inclusive: Whether thresholds are inclusive (default: True).
            If True, pixels >= threshold are labeled as foreground.
            If False, pixels > threshold are labeled as foreground.
        chunk_size: Optional chunk size for dask processing

    Returns:
        New ZarrNii instance with labeled segmentation

    Examples:
        >>> # Binary threshold segmentation
        >>> segmented = znimg.segment_threshold(0.5)
        >>>
        >>> # Multi-level threshold segmentation
        >>> thresholds = znimg.compute_otsu_thresholds(classes=3)
        >>> segmented = znimg.segment_threshold(thresholds[1:-1])  # Exclude min/max values
    """
    from .plugins.segmentation import ThresholdSegmentation

    plugin = ThresholdSegmentation(thresholds=thresholds, inclusive=inclusive)
    return self.segment(plugin, chunk_size=chunk_size)

zarrnii.ZarrNii.compute_histogram(bins=256, range=None, mask=None, **kwargs)

Compute histogram of the image.

This method computes the histogram of image intensities, optionally using a mask to weight the computation. The histogram is computed using dask for efficient processing of large datasets.

Parameters:

  • bins (int, default: 256 ) –

    Number of histogram bins (default: 256)

  • range (Optional[Tuple[float, float]], default: None ) –

    Optional tuple (min, max) defining histogram range. If None, uses the full range of the data

  • mask (Optional['ZarrNii'], default: None ) –

    Optional ZarrNii mask of same shape as image. Only pixels where mask > 0 are included in histogram computation

  • **kwargs (Any, default: {} ) –

    Additional arguments passed to dask.array.histogram

Returns:

  • Array

    Tuple of (histogram_counts, bin_edges) where:

  • Array
    • histogram_counts: dask array of histogram bin counts
  • Tuple[Array, Array]
    • bin_edges: dask array of bin edge values (length = bins + 1)

Examples:

>>> # Compute histogram
>>> hist, bin_edges = znimg.compute_histogram(bins=128)
>>>
>>> # Compute histogram with mask
>>> mask = znimg > 0.5
>>> hist_masked, _ = znimg.compute_histogram(mask=mask)
Source code in zarrnii/core.py
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
def compute_histogram(
    self,
    bins: int = 256,
    range: Optional[Tuple[float, float]] = None,
    mask: Optional["ZarrNii"] = None,
    **kwargs: Any,
) -> Tuple[da.Array, da.Array]:
    """
    Compute histogram of the image.

    This method computes the histogram of image intensities, optionally using
    a mask to weight the computation. The histogram is computed using dask for
    efficient processing of large datasets.

    Args:
        bins: Number of histogram bins (default: 256)
        range: Optional tuple (min, max) defining histogram range. If None,
            uses the full range of the data
        mask: Optional ZarrNii mask of same shape as image. Only pixels
            where mask > 0 are included in histogram computation
        **kwargs: Additional arguments passed to dask.array.histogram

    Returns:
        Tuple of (histogram_counts, bin_edges) where:
        - histogram_counts: dask array of histogram bin counts
        - bin_edges: dask array of bin edge values (length = bins + 1)

    Examples:
        >>> # Compute histogram
        >>> hist, bin_edges = znimg.compute_histogram(bins=128)
        >>>
        >>> # Compute histogram with mask
        >>> mask = znimg > 0.5
        >>> hist_masked, _ = znimg.compute_histogram(mask=mask)
    """
    from .analysis import compute_histogram

    mask_data = mask.darr if mask is not None else None
    return compute_histogram(
        self.darr, bins=bins, range=range, mask=mask_data, **kwargs
    )

zarrnii.ZarrNii.compute_otsu_thresholds(classes=2, bins=256, range=None, mask=None, return_figure=False)

Compute Otsu multi-level thresholds for the image.

This method first computes the histogram of the image, then uses scikit-image's threshold_multiotsu to compute optimal threshold values.

Parameters:

  • classes (int, default: 2 ) –

    Number of classes to separate data into (default: 2). Must be >= 2. For classes=2, returns 1 threshold. For classes=k, returns k-1 thresholds.

  • bins (int, default: 256 ) –

    Number of histogram bins (default: 256)

  • range (Optional[Tuple[float, float]], default: None ) –

    Optional tuple (min, max) defining histogram range. If None, uses the full range of the data

  • mask (Optional['ZarrNii'], default: None ) –

    Optional ZarrNii mask of same shape as image. Only pixels where mask > 0 are included in histogram computation

  • return_figure (bool, default: False ) –

    If True, returns a tuple containing thresholds and a matplotlib figure with the histogram and annotated threshold lines (default: False).

Returns:

  • Union[List[float], Tuple[List[float], Any]]

    If return_figure is False (default): List of threshold values. For classes=k, returns k+1 values: [0, threshold1, threshold2, ..., threshold_k-1, max_intensity] where 0 represents the minimum and max_intensity represents the maximum.

  • Union[List[float], Tuple[List[float], Any]]

    If return_figure is True: Tuple of (thresholds, figure) where figure is a matplotlib Figure object showing the histogram with annotated threshold lines.

Examples:

>>> # Compute binary threshold (2 classes)
>>> thresholds = znimg.compute_otsu_thresholds(classes=2)
>>> print(f"Binary thresholds: {thresholds}")
>>>
>>> # Compute multi-level thresholds (3 classes)
>>> thresholds = znimg.compute_otsu_thresholds(classes=3)
>>> print(f"Multi-level thresholds: {thresholds}")
>>>
>>> # Get histogram data along with thresholds
>>> thresholds, (hist, bin_edges) = znimg.compute_otsu_thresholds(
...     classes=2, return_histogram=True
... )
>>>
>>> # Generate a figure with annotated thresholds
>>> thresholds, fig = znimg.compute_otsu_thresholds(
...     classes=2, return_figure=True
... )
>>> fig.savefig('otsu_thresholds.png')
Source code in zarrnii/core.py
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
def compute_otsu_thresholds(
    self,
    classes: int = 2,
    bins: int = 256,
    range: Optional[Tuple[float, float]] = None,
    mask: Optional["ZarrNii"] = None,
    return_figure: bool = False,
) -> Union[
    List[float],
    Tuple[List[float], Any],
]:
    """
    Compute Otsu multi-level thresholds for the image.

    This method first computes the histogram of the image, then uses
    scikit-image's threshold_multiotsu to compute optimal threshold values.

    Args:
        classes: Number of classes to separate data into (default: 2).
            Must be >= 2. For classes=2, returns 1 threshold. For classes=k,
            returns k-1 thresholds.
        bins: Number of histogram bins (default: 256)
        range: Optional tuple (min, max) defining histogram range. If None,
            uses the full range of the data
        mask: Optional ZarrNii mask of same shape as image. Only pixels
            where mask > 0 are included in histogram computation
        return_figure: If True, returns a tuple containing thresholds and a
            matplotlib figure with the histogram and annotated threshold lines
            (default: False).

    Returns:
        If return_figure is False (default):
            List of threshold values. For classes=k, returns k+1 values:
            [0, threshold1, threshold2, ..., threshold_k-1, max_intensity]
            where 0 represents the minimum and max_intensity represents the maximum.

        If return_figure is True:
            Tuple of (thresholds, figure) where figure is a matplotlib Figure
            object showing the histogram with annotated threshold lines.

    Examples:
        >>> # Compute binary threshold (2 classes)
        >>> thresholds = znimg.compute_otsu_thresholds(classes=2)
        >>> print(f"Binary thresholds: {thresholds}")
        >>>
        >>> # Compute multi-level thresholds (3 classes)
        >>> thresholds = znimg.compute_otsu_thresholds(classes=3)
        >>> print(f"Multi-level thresholds: {thresholds}")
        >>>
        >>> # Get histogram data along with thresholds
        >>> thresholds, (hist, bin_edges) = znimg.compute_otsu_thresholds(
        ...     classes=2, return_histogram=True
        ... )
        >>>
        >>> # Generate a figure with annotated thresholds
        >>> thresholds, fig = znimg.compute_otsu_thresholds(
        ...     classes=2, return_figure=True
        ... )
        >>> fig.savefig('otsu_thresholds.png')
    """
    from .analysis import compute_otsu_thresholds

    # First compute histogram
    hist, bin_edges = self.compute_histogram(bins=bins, range=range, mask=mask)

    # Then compute thresholds with optional returns
    return compute_otsu_thresholds(
        hist,
        classes=classes,
        bin_edges=bin_edges,
        return_figure=return_figure,
    )

zarrnii.ZarrNii.apply_scaled_processing(plugin, downsample_factor=4, chunk_size=None, upsampled_ome_zarr_path=None, **kwargs)

Apply scaled processing plugin using multi-resolution approach.

This method implements a multi-resolution processing pipeline where: 1. The image is downsampled for efficient computation 2. The plugin's lowres_func is applied to the downsampled data 3. The result is upsampled using dask-based upsampling 4. The plugin's highres_func applies the result to full-resolution data

Parameters:

  • plugin

    ScaledProcessingPlugin instance or class to apply

  • downsample_factor (int, default: 4 ) –

    Factor for downsampling (default: 4)

  • chunk_size (Optional[Tuple[int, ...]], default: None ) –

    Optional chunk size for low-res processing. If None, uses (1, 10, 10, 10).

  • upsampled_ome_zarr_path (Optional[str], default: None ) –

    Path to save intermediate OME-Zarr, default saved in system temp directory.

  • **kwargs

    Additional arguments passed to the plugin

Returns:

  • 'ZarrNii'

    New ZarrNii instance with processed data

Source code in zarrnii/core.py
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
def apply_scaled_processing(
    self,
    plugin,
    downsample_factor: int = 4,
    chunk_size: Optional[Tuple[int, ...]] = None,
    upsampled_ome_zarr_path: Optional[str] = None,
    **kwargs,
) -> "ZarrNii":
    """
    Apply scaled processing plugin using multi-resolution approach.

    This method implements a multi-resolution processing pipeline where:
    1. The image is downsampled for efficient computation
    2. The plugin's lowres_func is applied to the downsampled data
    3. The result is upsampled using dask-based upsampling
    4. The plugin's highres_func applies the result to full-resolution data

    Args:
        plugin: ScaledProcessingPlugin instance or class to apply
        downsample_factor: Factor for downsampling (default: 4)
        chunk_size: Optional chunk size for low-res processing. If None, uses (1, 10, 10, 10).
        upsampled_ome_zarr_path: Path to save intermediate OME-Zarr, default saved in system temp directory.
        **kwargs: Additional arguments passed to the plugin

    Returns:
        New ZarrNii instance with processed data
    """
    from .plugins.scaled_processing import ScaledProcessingPlugin

    # Handle plugin instance or class
    if isinstance(plugin, type) and issubclass(plugin, ScaledProcessingPlugin):
        plugin = plugin(**kwargs)
    elif not isinstance(plugin, ScaledProcessingPlugin):
        raise TypeError(
            "Plugin must be an instance or subclass of ScaledProcessingPlugin"
        )

    # Step 1: Downsample the data for low-resolution processing
    lowres_znimg = self.downsample(level=int(np.log2(downsample_factor)))

    # Convert to numpy array for lowres processing
    lowres_array = lowres_znimg.data.compute()

    # Step 2: Apply low-resolution function and prepare for upsampling
    # Use chunk_size parameter for the low-res processing chunks
    lowres_chunks = chunk_size if chunk_size is not None else (1, 10, 10, 10)
    lowres_znimg.data = da.from_array(
        plugin.lowres_func(lowres_array), chunks=lowres_chunks
    )

    # Use temporary OME-Zarr to break up dask graph for performance
    import tempfile

    if upsampled_ome_zarr_path is None:
        upsampled_ome_zarr_path = tempfile.mkdtemp(suffix="_SPIM.ome.zarr")

    # Step 3: Upsample using dask-based upsampling, save to ome zarr
    lowres_znimg.upsample(to_shape=self.shape).to_ome_zarr(
        upsampled_ome_zarr_path, max_layer=1
    )

    upsampled_znimg = ZarrNii.from_ome_zarr(upsampled_ome_zarr_path)

    corrected_znimg = self.copy()

    # Step 4: Apply high-resolution function
    # rechunk original data to use same chunksize as upsampled_data, before multiplying
    corrected_znimg.data = plugin.highres_func(
        self.data.rechunk(upsampled_znimg.data.chunks), upsampled_znimg.data
    )

    return corrected_znimg

Bases: ZarrNii

Brain atlas with segmentation image and region lookup table.

Represents a brain atlas consisting of a segmentation image (dseg) that assigns integer labels to brain regions, and a lookup table (tsv) that maps these labels to region names and other metadata.

Extension of ZarrNii to support atlas label tables.

Inherits all functionality from ZarrNii and adds support for storing region/label metadata in a pandas DataFrame.

Attributes

labels_df : pandas.DataFrame DataFrame containing label information for the atlas. label_column : str Name of the column in labels_df containing label indices. name_column : str Name of the column in labels_df containing region names. abbrev_column : str Name of the column in labels_df containing region abbreviations.

Source code in zarrnii/core.py
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
def __init__(
    self,
    darr=None,
    affine=None,
    axes_order="ZYX",
    orientation="RAS",
    xyz_orientation=None,
    ngff_image=None,
    _omero=None,
    **kwargs,
):
    """
    Constructor with backward compatibility for old signature.
    """
    # Handle backwards compatibility: if xyz_orientation is provided, use it
    # Otherwise, use orientation for backwards compatibility
    final_orientation = (
        xyz_orientation if xyz_orientation is not None else orientation
    )

    if ngff_image is not None:
        # New signature
        object.__setattr__(self, "ngff_image", ngff_image)
        object.__setattr__(self, "axes_order", axes_order)
        object.__setattr__(self, "xyz_orientation", final_orientation)
        object.__setattr__(self, "_omero", _omero)
    elif darr is not None:
        # Legacy signature - delegate to from_darr
        instance = self.from_darr(
            darr=darr,
            affine=affine,
            axes_order=axes_order,
            orientation=final_orientation,
            **kwargs,
        )
        object.__setattr__(self, "ngff_image", instance.ngff_image)
        object.__setattr__(self, "axes_order", instance.axes_order)
        object.__setattr__(self, "xyz_orientation", instance.xyz_orientation)
        object.__setattr__(self, "_omero", instance._omero)
    else:
        raise ValueError("Must provide either ngff_image or darr")

Attributes

zarrnii.ZarrNiiAtlas.dseg property

Return self as the segmentation image (for compatibility with API).

Functions

zarrnii.ZarrNiiAtlas.create_from_dseg(dseg, labels_df, **kwargs) classmethod

Create ZarrNiiAtlas from a dseg ZarrNii and labels DataFrame.

Parameters:

  • dseg (ZarrNii) –

    ZarrNii segmentation image

  • labels_df (DataFrame) –

    DataFrame containing label information

  • **kwargs

    Additional keyword arguments for label/name/abbrev columns

Returns:

  • ZarrNiiAtlas instance

Source code in zarrnii/atlas.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
@classmethod
def create_from_dseg(cls, dseg: ZarrNii, labels_df: pd.DataFrame, **kwargs):
    """Create ZarrNiiAtlas from a dseg ZarrNii and labels DataFrame.

    Args:
        dseg: ZarrNii segmentation image
        labels_df: DataFrame containing label information
        **kwargs: Additional keyword arguments for label/name/abbrev columns

    Returns:
        ZarrNiiAtlas instance
    """
    if not isinstance(dseg, ZarrNii):
        raise TypeError(f"dseg must be a ZarrNii instance, got {type(dseg)}")

    # Note: attrs strips leading underscore from _omero in __init__ signature
    # so we pass it as 'omero' instead of '_omero'
    return cls(
        ngff_image=dseg.ngff_image,
        axes_order=dseg.axes_order,
        xyz_orientation=dseg.xyz_orientation,
        omero=getattr(dseg, "_omero", None),
        labels_df=labels_df,
        **kwargs,
    )

zarrnii.ZarrNiiAtlas.from_files(dseg_path, labels_path, **kwargs) classmethod

Load ZarrNiiAtlas from dseg image and labels TSV files.

Parameters:

  • dseg_path (Union[str, Path]) –

    Path to segmentation image (NIfTI or OME-Zarr)

  • labels_path (Union[str, Path]) –

    Path to labels TSV file

  • **kwargs

    Additional arguments passed to ZarrNii.from_file()

Returns:

  • ZarrNiiAtlas instance

Source code in zarrnii/atlas.py
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
@classmethod
def from_files(
    cls, dseg_path: Union[str, Path], labels_path: Union[str, Path], **kwargs
):
    """Load ZarrNiiAtlas from dseg image and labels TSV files.

    Args:
        dseg_path: Path to segmentation image (NIfTI or OME-Zarr)
        labels_path: Path to labels TSV file
        **kwargs: Additional arguments passed to ZarrNii.from_file()

    Returns:
        ZarrNiiAtlas instance
    """
    # Load segmentation image
    dseg = ZarrNii.from_file(str(dseg_path), **kwargs)

    # Load labels dataframe
    labels_df = pd.read_csv(str(labels_path), sep="\t")

    # Create atlas instance using create_from_dseg
    return cls.create_from_dseg(dseg, labels_df)

zarrnii.ZarrNiiAtlas.from_itksnap_lut(path, lut_path, **kwargs) classmethod

Construct from itksnap lut file.

Source code in zarrnii/atlas.py
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
@classmethod
def from_itksnap_lut(cls, path, lut_path, **kwargs):
    """
    Construct from itksnap lut file.
    """
    znii = super().from_file(path, **kwargs)
    labels_df = cls._import_itksnap_lut(lut_path)
    print(labels_df)
    return cls(
        ngff_image=znii.ngff_image,
        axes_order=znii.axes_order,
        xyz_orientation=znii.xyz_orientation,
        labels_df=labels_df,
        omero=getattr(znii, "_omero", None),
    )

zarrnii.ZarrNiiAtlas.from_csv_lut(path, lut_path, **kwargs) classmethod

Construct from csv lut file.

Source code in zarrnii/atlas.py
456
457
458
459
460
461
462
463
464
465
466
467
468
469
@classmethod
def from_csv_lut(cls, path, lut_path, **kwargs):
    """
    Construct from csv lut file.
    """
    znii = super().from_file(path, **kwargs)
    labels_df = cls._import_csv_lut(lut_path)
    return cls(
        ngff_image=znii.ngff_image,
        axes_order=znii.axes_order,
        xyz_orientation=znii.xyz_orientation,
        labels_df=labels_df,
        omero=getattr(znii, "_omero", None),
    )

zarrnii.ZarrNiiAtlas.from_tsv_lut(path, lut_path, **kwargs) classmethod

Construct from tsv lut file.

Source code in zarrnii/atlas.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
@classmethod
def from_tsv_lut(cls, path, lut_path, **kwargs):
    """
    Construct from tsv lut file.
    """
    znii = super().from_file(path, **kwargs)
    labels_df = cls._import_tsv_lut(lut_path)
    return cls(
        ngff_image=znii.ngff_image,
        axes_order=znii.axes_order,
        xyz_orientation=znii.xyz_orientation,
        labels_df=labels_df,
        omero=getattr(znii, "_omero", None),
    )

zarrnii.ZarrNiiAtlas.from_labelmapper_lut(path, lut_path, **kwargs) classmethod

Construct from labelmapper lut file.

Source code in zarrnii/atlas.py
486
487
488
489
490
491
492
493
494
495
496
497
498
499
@classmethod
def from_labelmapper_lut(cls, path, lut_path, **kwargs):
    """
    Construct from labelmapper lut file.
    """
    znii = super().from_file(path, **kwargs)
    labels_df = cls._import_labelmapper_lut(lut_path)
    return cls(
        ngff_image=znii.ngff_image,
        axes_order=znii.axes_order,
        xyz_orientation=znii.xyz_orientation,
        labels_df=labels_df,
        omero=getattr(znii, "_omero", None),
    )

zarrnii.ZarrNiiAtlas.get_region_info(region_id)

Get information about a specific region.

Parameters:

  • region_id (Union[int, str]) –

    Region identifier (int label, name, or abbreviation)

Returns:

  • Dict[str, Any]

    Dictionary containing region information

Raises:

  • ValueError

    If region not found in atlas

Source code in zarrnii/atlas.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
def get_region_info(self, region_id: Union[int, str]) -> Dict[str, Any]:
    """Get information about a specific region.

    Args:
        region_id: Region identifier (int label, name, or abbreviation)

    Returns:
        Dictionary containing region information

    Raises:
        ValueError: If region not found in atlas
    """
    label = self._resolve_region_identifier(region_id)

    # Find the region in labels DataFrame
    region_row = self.labels_df[self.labels_df[self.label_column] == label]
    if region_row.empty:
        raise ValueError(f"Region with label {label} not found in atlas")

    return region_row.iloc[0].to_dict()

zarrnii.ZarrNiiAtlas.get_region_mask(region_id)

Create binary mask for a specific region.

Parameters:

  • region_id (Union[int, str]) –

    Region identifier (int label, name, or abbreviation)

Returns:

  • ZarrNii

    ZarrNii instance containing binary mask (1 for region, 0 elsewhere)

Raises:

  • ValueError

    If region not found in atlas

Source code in zarrnii/atlas.py
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def get_region_mask(self, region_id: Union[int, str]) -> ZarrNii:
    """Create binary mask for a specific region.

    Args:
        region_id: Region identifier (int label, name, or abbreviation)

    Returns:
        ZarrNii instance containing binary mask (1 for region, 0 elsewhere)

    Raises:
        ValueError: If region not found in atlas
    """
    label = self._resolve_region_identifier(region_id)

    # Validate that the region exists in our labels_df
    if not (self.labels_df[self.label_column] == label).any():
        raise ValueError(f"Region with label {label} not found in atlas")

    # Create binary mask
    mask_data = (self.dseg.data == label).astype(np.uint8)

    return ZarrNii.from_darr(
        mask_data, affine=self.dseg.affine, axes_order=self.dseg.axes_order
    )

zarrnii.ZarrNiiAtlas.get_region_volume(region_id)

Calculate volume of a specific region in mm³.

Parameters:

  • region_id (Union[int, str]) –

    Region identifier (int label, name, or abbreviation)

Returns:

  • float

    Volume in cubic millimeters

Raises:

  • ValueError

    If region not found in atlas

Source code in zarrnii/atlas.py
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
def get_region_volume(self, region_id: Union[int, str]) -> float:
    """Calculate volume of a specific region in mm³.

    Args:
        region_id: Region identifier (int label, name, or abbreviation)

    Returns:
        Volume in cubic millimeters

    Raises:
        ValueError: If region not found in atlas
    """
    label = self._resolve_region_identifier(region_id)

    # Count voxels with this label
    dseg_data = self.dseg.data
    if hasattr(dseg_data, "compute"):
        voxel_count = int((dseg_data == label).sum().compute())
    else:
        voxel_count = int((dseg_data == label).sum())

    # Calculate volume using voxel size from affine
    # Volume per voxel = abs(det(affine[:3, :3]))
    voxel_volume = abs(np.linalg.det(self.dseg.affine[:3, :3]))

    return float(voxel_count * voxel_volume)

zarrnii.ZarrNiiAtlas.aggregate_image_by_regions(image, aggregation_func='mean', background_label=0, column_suffix='value')

Aggregate image values by atlas regions.

Parameters:

  • image (ZarrNii) –

    Image to aggregate (must be compatible with atlas)

  • aggregation_func (str, default: 'mean' ) –

    Aggregation function ('mean', 'sum', 'std', 'median', 'min', 'max')

  • background_label (int, default: 0 ) –

    Label value to treat as background (excluded from results)

  • column_suffix (str, default: 'value' ) –

    String suffix to append to column name. Name will be {agg_func}_{col_suffix}.

Returns: DataFrame with columns: index, name, {aggregation_func}_{column_suffix}, volume_mm3 (e.g., with defaults: index, name, mean_value, volume_mm3)

Raises:

  • ValueError

    If image and atlas are incompatible

Source code in zarrnii/atlas.py
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def aggregate_image_by_regions(
    self,
    image: ZarrNii,
    aggregation_func: str = "mean",
    background_label: int = 0,
    column_suffix: str = "value",
) -> pd.DataFrame:
    """Aggregate image values by atlas regions.

    Args:
        image: Image to aggregate (must be compatible with atlas)
        aggregation_func: Aggregation function ('mean', 'sum', 'std', 'median', 'min', 'max')
        background_label: Label value to treat as background (excluded from results)
        column_suffix: String suffix to append to column name. Name will be {agg_func}_{col_suffix}.
    Returns:
        DataFrame with columns: index, name, {aggregation_func}_{column_suffix}, volume_mm3
        (e.g., with defaults: index, name, mean_value, volume_mm3)

    Raises:
        ValueError: If image and atlas are incompatible
    """
    # Validate image compatibility
    if not np.array_equal(image.shape, self.dseg.shape):
        raise ValueError(
            f"Image shape {image.shape} doesn't match atlas shape {self.dseg.shape}"
        )

    if not np.allclose(image.affine, self.dseg.affine, atol=1e-6):
        warnings.warn(
            "Image and atlas affines don't match exactly. "
            "Results may be spatially inconsistent."
        )

    # Get all unique labels (excluding background)
    dseg_data = self.dseg.data
    if hasattr(dseg_data, "compute"):
        dseg_data = dseg_data.compute()
    unique_labels = np.unique(dseg_data)
    unique_labels = unique_labels[unique_labels != background_label]

    results = []
    for label in unique_labels:
        # Create mask for this region
        mask = self.dseg.data == label

        # Extract image values for this region
        region_values = image.data[mask]

        # Skip if no voxels (shouldn't happen with unique labels)
        if region_values.size == 0:
            continue

        # Compute aggregation
        if hasattr(region_values, "compute"):
            # Dask array - need to compute
            if aggregation_func == "mean":
                agg_value = float(region_values.mean().compute())
            elif aggregation_func == "sum":
                agg_value = float(region_values.sum().compute())
            elif aggregation_func == "std":
                agg_value = float(region_values.std().compute())
            elif aggregation_func == "median":
                agg_value = float(np.median(region_values.compute()))
            elif aggregation_func == "min":
                agg_value = float(region_values.min().compute())
            elif aggregation_func == "max":
                agg_value = float(region_values.max().compute())
            else:
                raise ValueError(
                    f"Unknown aggregation function: {aggregation_func}. "
                    "Supported: mean, sum, std, median, min, max"
                )
        else:
            # NumPy array - direct computation
            if aggregation_func == "mean":
                agg_value = float(region_values.mean())
            elif aggregation_func == "sum":
                agg_value = float(region_values.sum())
            elif aggregation_func == "std":
                agg_value = float(region_values.std())
            elif aggregation_func == "median":
                agg_value = float(np.median(region_values))
            elif aggregation_func == "min":
                agg_value = float(region_values.min())
            elif aggregation_func == "max":
                agg_value = float(region_values.max())
            else:
                raise ValueError(
                    f"Unknown aggregation function: {aggregation_func}. "
                    "Supported: mean, sum, std, median, min, max"
                )

        column_name = (
            aggregation_func
            if column_suffix is None
            else f"{aggregation_func}_{column_suffix}"
        )

        # Get region info
        try:
            region_info = self.get_region_info(int(label))
            region_name = region_info[self.name_column]
        except ValueError:
            region_name = f"Unknown_Region_{label}"

        # Calculate volume
        volume = self.get_region_volume(int(label))

        results.append(
            {
                self.label_column: int(label),
                self.name_column: region_name,
                column_name: agg_value,
                "volume_mm3": volume,
            }
        )

    return pd.DataFrame(results)

zarrnii.ZarrNiiAtlas.create_feature_map(feature_data, feature_column, label_column='index')

Create feature map by assigning values to atlas regions.

Parameters:

  • feature_data (DataFrame) –

    DataFrame with region labels and feature values

  • feature_column (str) –

    Column name containing feature values to map

  • label_column (str, default: 'index' ) –

    Column name containing region labels

Returns:

  • ZarrNii

    ZarrNii instance with feature values mapped to regions

Raises:

  • ValueError

    If required columns are missing

Source code in zarrnii/atlas.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
def create_feature_map(
    self,
    feature_data: pd.DataFrame,
    feature_column: str,
    label_column: str = "index",
) -> ZarrNii:
    """Create feature map by assigning values to atlas regions.

    Args:
        feature_data: DataFrame with region labels and feature values
        feature_column: Column name containing feature values to map
        label_column: Column name containing region labels

    Returns:
        ZarrNii instance with feature values mapped to regions

    Raises:
        ValueError: If required columns are missing
    """
    # Validate input
    required_cols = [label_column, feature_column]
    missing_cols = [col for col in required_cols if col not in feature_data.columns]
    if missing_cols:
        raise ValueError(f"Missing columns in feature_data: {missing_cols}")

    dseg_data = self.dseg.data.astype("int")  # dask array of labels

    # make a dense lookup array
    max_label = int(feature_data[label_column].max())
    lut = np.zeros(max_label + 1, dtype=np.float32)
    lut[feature_data[label_column].to_numpy(dtype=int)] = feature_data[
        feature_column
    ].to_numpy(dtype=float)

    # broadcast the mapping in one go
    feature_map = dseg_data.map_blocks(lambda block: lut[block], dtype=np.float32)

    return ZarrNii.from_darr(
        feature_map, affine=self.dseg.affine, axes_order=self.dseg.axes_order
    )

zarrnii.ZarrNiiAtlas.get_region_bounding_box(region_ids=None, regex=None)

Get bounding box in physical coordinates for selected regions.

This method computes the spatial extents (bounding box) of one or more atlas regions in physical/world coordinates. The returned bounding box can be used directly with the crop method to extract a subvolume containing the selected regions.

Parameters:

  • region_ids (Union[int, str, List[Union[int, str]]], default: None ) –

    Region identifier(s) to include in bounding box. Can be: - Single int: label index - Single str: region name or abbreviation - List[int/str]: multiple regions by index, name, or abbreviation - None: use regex parameter instead

  • regex (Optional[str], default: None ) –

    Regular expression to match region names. If provided, region_ids must be None. Case-insensitive matching.

Returns:

  • Tuple[float, float, float]

    Tuple of (bbox_min, bbox_max) where each is a tuple of (x, y, z)

  • Tuple[float, float, float]

    coordinates in physical/world space (mm). These can be passed

  • Tuple[Tuple[float, float, float], Tuple[float, float, float]]

    directly to ZarrNii.crop() method with physical_coords=True.

Raises:

  • ValueError

    If no regions match the selection criteria, or if both region_ids and regex are provided/omitted

  • TypeError

    If region_ids contains invalid types

Examples:

>>> # Get bounding box for single region
>>> bbox_min, bbox_max = atlas.get_region_bounding_box("Hippocampus")
>>> cropped = image.crop(bbox_min, bbox_max, physical_coords=True)
>>>
>>> # Get bounding box for multiple regions
>>> bbox_min, bbox_max = atlas.get_region_bounding_box(["Hippocampus", "Amygdala"])
>>>
>>> # Use regex to select regions
>>> bbox_min, bbox_max = atlas.get_region_bounding_box(regex="Hip.*")
>>>
>>> # Crop atlas itself to region
>>> cropped_atlas = atlas.crop(bbox_min, bbox_max, physical_coords=True)
Notes
  • Bounding box is in physical coordinates (mm), not voxel indices
  • Axes ordering is relative to self.axes_order (e.g. ZYX for ome zarr)
  • The bounding box is the union of all selected regions
  • Use the returned values with crop(physical_coords=True)
Source code in zarrnii/atlas.py
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
def get_region_bounding_box(
    self,
    region_ids: Union[int, str, List[Union[int, str]]] = None,
    regex: Optional[str] = None,
) -> Tuple[Tuple[float, float, float], Tuple[float, float, float]]:
    """Get bounding box in physical coordinates for selected regions.

    This method computes the spatial extents (bounding box) of one or more
    atlas regions in physical/world coordinates. The returned bounding box
    can be used directly with the crop method to extract a subvolume
    containing the selected regions.

    Args:
        region_ids: Region identifier(s) to include in bounding box. Can be:
            - Single int: label index
            - Single str: region name or abbreviation
            - List[int/str]: multiple regions by index, name, or abbreviation
            - None: use regex parameter instead
        regex: Regular expression to match region names. If provided,
            region_ids must be None. Case-insensitive matching.

    Returns:
        Tuple of (bbox_min, bbox_max) where each is a tuple of (x, y, z)
        coordinates in physical/world space (mm). These can be passed
        directly to ZarrNii.crop() method with physical_coords=True.

    Raises:
        ValueError: If no regions match the selection criteria, or if both
            region_ids and regex are provided/omitted
        TypeError: If region_ids contains invalid types

    Examples:
        >>> # Get bounding box for single region
        >>> bbox_min, bbox_max = atlas.get_region_bounding_box("Hippocampus")
        >>> cropped = image.crop(bbox_min, bbox_max, physical_coords=True)
        >>>
        >>> # Get bounding box for multiple regions
        >>> bbox_min, bbox_max = atlas.get_region_bounding_box(["Hippocampus", "Amygdala"])
        >>>
        >>> # Use regex to select regions
        >>> bbox_min, bbox_max = atlas.get_region_bounding_box(regex="Hip.*")
        >>>
        >>> # Crop atlas itself to region
        >>> cropped_atlas = atlas.crop(bbox_min, bbox_max, physical_coords=True)

    Notes:
        - Bounding box is in physical coordinates (mm), not voxel indices
        - Axes ordering is relative to self.axes_order (e.g. ZYX for ome zarr)
        - The bounding box is the union of all selected regions
        - Use the returned values with crop(physical_coords=True)
    """
    import re

    import dask.array as da

    # Validate input parameters
    if region_ids is None and regex is None:
        raise ValueError("Must provide either region_ids or regex parameter")
    if region_ids is not None and regex is not None:
        raise ValueError("Cannot provide both region_ids and regex parameters")

    # Determine which labels to include
    selected_labels = []

    if regex is not None:
        # Match regions using regex
        pattern = re.compile(regex, re.IGNORECASE)
        for _, row in self.labels_df.iterrows():
            region_name = str(row[self.name_column])
            if pattern.search(region_name):
                selected_labels.append(int(row[self.label_column]))

        if not selected_labels:
            raise ValueError(f"No regions matched regex pattern: {regex}")
    else:
        # Convert region_ids to list if single value
        if not isinstance(region_ids, list):
            region_ids = [region_ids]

        # Resolve each region identifier to label
        for region_id in region_ids:
            label = self._resolve_region_identifier(region_id)
            selected_labels.append(label)

    # Create union mask of all selected regions
    dseg_data = self.dseg.data
    mask = None
    for label in selected_labels:
        region_mask = dseg_data == label
        if mask is None:
            mask = region_mask
        else:
            mask = mask | region_mask

    # Find voxel coordinates where mask is True
    # da.where returns tuple of arrays (one per dimension in data array)
    indices = da.where(mask)

    # Compute the indices to get actual coordinates
    indices_computed = [idx.compute() for idx in indices]

    # Check if any voxels were found
    if any(idx.size == 0 for idx in indices_computed):
        raise ValueError(f"No voxels found for selected regions: {selected_labels}")

    # Get the spatial dimensions from dims (skip non-spatial like 'c', 't')
    spatial_dims_lower = [d.lower() for d in ["x", "y", "z"]]
    spatial_indices = []
    for i, dim in enumerate(self.dseg.dims):
        if dim.lower() in spatial_dims_lower:
            spatial_indices.append(i)

    # Extract spatial coordinates from indices
    # indices_computed has one array per dimension in data
    voxel_coords = []
    for spatial_idx in spatial_indices:
        voxel_coords.append(indices_computed[spatial_idx])

    # Get min and max for each spatial dimension
    voxel_mins = [int(coords.min()) for coords in voxel_coords]
    voxel_maxs = [
        int(coords.max()) + 1 for coords in voxel_coords
    ]  # +1 for inclusive max

    # Now we have voxel coordinates in the order they appear in dims
    # We need to convert to (x, y, z) order for physical coordinates
    dim_to_voxel_range = {}
    for i, spatial_idx in enumerate(spatial_indices):
        dim_name = self.dseg.dims[spatial_idx].lower()
        dim_to_voxel_range[dim_name] = (voxel_mins[i], voxel_maxs[i])

    # Build voxel coordinates in (x, y, z) order
    voxel_min_xyz = np.array(
        [
            dim_to_voxel_range["x"][0],
            dim_to_voxel_range["y"][0],
            dim_to_voxel_range["z"][0],
            1.0,
        ]
    )
    voxel_max_xyz = np.array(
        [
            dim_to_voxel_range["x"][1],
            dim_to_voxel_range["y"][1],
            dim_to_voxel_range["z"][1],
            1.0,
        ]
    )

    # Transform to physical coordinates using affine
    affine_matrix = self.dseg.affine.matrix
    physical_min = affine_matrix @ voxel_min_xyz
    physical_max = affine_matrix @ voxel_max_xyz

    # Return as tuples of (x, y, z) in physical space
    bbox_min = tuple(physical_min[:3].tolist())
    bbox_max = tuple(physical_max[:3].tolist())

    return bbox_min, bbox_max

zarrnii.ZarrNiiAtlas.sample_region_patches(n_patches, region_ids=None, regex=None, seed=None)

Sample random coordinates (centers) within atlas regions.

This method generates a list of center coordinates by randomly sampling voxels within the selected atlas regions. The returned coordinates are in physical/world space (mm) and can be used with crop_centered() to extract fixed-size patches for machine learning training or other workflows.

Parameters:

  • n_patches (int) –

    Number of patch centers to sample

  • region_ids (Union[int, str, List[Union[int, str]]], default: None ) –

    Region identifier(s) to sample from. Can be: - Single int: label index - Single str: region name or abbreviation - List[int/str]: multiple regions by index, name, or abbreviation - None: use regex parameter instead

  • regex (Optional[str], default: None ) –

    Regular expression to match region names. If provided, region_ids must be None. Case-insensitive matching.

  • seed (Optional[int], default: None ) –

    Random seed for reproducibility. If None, patches are sampled randomly each time.

Returns:

  • List[Tuple[float, float, float]]

    List of (x, y, z) coordinates in physical/world space (mm).

  • List[Tuple[float, float, float]]

    Each coordinate represents the center of a potential patch and

  • List[Tuple[float, float, float]]

    can be used with crop_centered() to extract fixed-size regions.

Raises:

  • ValueError

    If no regions match the selection criteria, if both region_ids and regex are provided/omitted, or if n_patches is less than 1

  • TypeError

    If region_ids contains invalid types

Examples:

>>> # Sample 10 patch centers from hippocampus
>>> centers = atlas.sample_region_patches(
...     n_patches=10,
...     region_ids="Hippocampus",
...     seed=42
... )
>>> # Extract 256x256x256 voxel patches at each center
>>> patches = image.crop_centered(centers, patch_size=(256, 256, 256))
>>>
>>> # Sample from multiple regions using list
>>> centers = atlas.sample_region_patches(
...     n_patches=20,
...     region_ids=[1, 2, 3],
...     seed=42
... )
>>>
>>> # Sample using regex pattern
>>> centers = atlas.sample_region_patches(
...     n_patches=5,
...     regex=".*cortex.*",
... )
Notes
  • Coordinates are in physical space (mm), not voxel indices
  • Centers are sampled uniformly from voxels within selected regions
  • Use crop_centered() to extract fixed-size patches around these centers
  • For ML training with fixed patch sizes (e.g., 256x256x256 voxels), use a lower-resolution atlas to define masks, then crop at higher resolution using physical coordinates
Source code in zarrnii/atlas.py
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
def sample_region_patches(
    self,
    n_patches: int,
    region_ids: Union[int, str, List[Union[int, str]]] = None,
    regex: Optional[str] = None,
    seed: Optional[int] = None,
) -> List[Tuple[float, float, float]]:
    """Sample random coordinates (centers) within atlas regions.

    This method generates a list of center coordinates by randomly sampling
    voxels within the selected atlas regions. The returned coordinates are
    in physical/world space (mm) and can be used with crop_centered() to
    extract fixed-size patches for machine learning training or other workflows.

    Args:
        n_patches: Number of patch centers to sample
        region_ids: Region identifier(s) to sample from. Can be:
            - Single int: label index
            - Single str: region name or abbreviation
            - List[int/str]: multiple regions by index, name, or abbreviation
            - None: use regex parameter instead
        regex: Regular expression to match region names. If provided,
            region_ids must be None. Case-insensitive matching.
        seed: Random seed for reproducibility. If None, patches are sampled
            randomly each time.

    Returns:
        List of (x, y, z) coordinates in physical/world space (mm).
        Each coordinate represents the center of a potential patch and
        can be used with crop_centered() to extract fixed-size regions.

    Raises:
        ValueError: If no regions match the selection criteria, if both
            region_ids and regex are provided/omitted, or if n_patches is
            less than 1
        TypeError: If region_ids contains invalid types

    Examples:
        >>> # Sample 10 patch centers from hippocampus
        >>> centers = atlas.sample_region_patches(
        ...     n_patches=10,
        ...     region_ids="Hippocampus",
        ...     seed=42
        ... )
        >>> # Extract 256x256x256 voxel patches at each center
        >>> patches = image.crop_centered(centers, patch_size=(256, 256, 256))
        >>>
        >>> # Sample from multiple regions using list
        >>> centers = atlas.sample_region_patches(
        ...     n_patches=20,
        ...     region_ids=[1, 2, 3],
        ...     seed=42
        ... )
        >>>
        >>> # Sample using regex pattern
        >>> centers = atlas.sample_region_patches(
        ...     n_patches=5,
        ...     regex=".*cortex.*",
        ... )

    Notes:
        - Coordinates are in physical space (mm), not voxel indices
        - Centers are sampled uniformly from voxels within selected regions
        - Use crop_centered() to extract fixed-size patches around these centers
        - For ML training with fixed patch sizes (e.g., 256x256x256 voxels),
          use a lower-resolution atlas to define masks, then crop at higher
          resolution using physical coordinates
    """
    import re

    import dask.array as da

    # Validate input
    if n_patches < 1:
        raise ValueError(f"n_patches must be at least 1, got {n_patches}")

    if region_ids is None and regex is None:
        raise ValueError("Must provide either region_ids or regex parameter")
    if region_ids is not None and regex is not None:
        raise ValueError("Cannot provide both region_ids and regex parameters")

    # Set random seed if provided
    if seed is not None:
        np.random.seed(seed)

    # Determine which labels to include (reuse logic from get_region_bounding_box)
    selected_labels = []

    if regex is not None:
        # Match regions using regex
        pattern = re.compile(regex, re.IGNORECASE)
        for _, row in self.labels_df.iterrows():
            region_name = str(row[self.name_column])
            if pattern.search(region_name):
                selected_labels.append(int(row[self.label_column]))

        if not selected_labels:
            raise ValueError(f"No regions matched regex pattern: {regex}")
    else:
        # Convert region_ids to list if single value
        if not isinstance(region_ids, list):
            region_ids = [region_ids]

        # Resolve each region identifier to label
        for region_id in region_ids:
            label = self._resolve_region_identifier(region_id)
            selected_labels.append(label)

    # Create union mask of all selected regions
    dseg_data = self.dseg.data
    mask = None
    for label in selected_labels:
        region_mask = dseg_data == label
        if mask is None:
            mask = region_mask
        else:
            mask = mask | region_mask

    # Find voxel coordinates where mask is True
    indices = da.where(mask)

    # Compute the indices to get actual coordinates
    indices_computed = [idx.compute() for idx in indices]

    # Check if any voxels were found
    if any(idx.size == 0 for idx in indices_computed):
        raise ValueError(f"No voxels found for selected regions: {selected_labels}")

    # Get number of valid voxels
    n_voxels = indices_computed[0].size

    # Sample random voxels
    # If n_patches > n_voxels, sample with replacement
    replace = n_patches > n_voxels
    sampled_indices = np.random.choice(n_voxels, size=n_patches, replace=replace)

    # Get spatial dimensions (skip non-spatial like 'c', 't')
    spatial_dims_lower = [d.lower() for d in ["x", "y", "z"]]
    spatial_indices = []
    for i, dim in enumerate(self.dseg.dims):
        if dim.lower() in spatial_dims_lower:
            spatial_indices.append(i)

    # Build voxel coordinates for sampled centers
    sampled_coords = []
    for spatial_idx in spatial_indices:
        sampled_coords.append(indices_computed[spatial_idx][sampled_indices])

    # Map to x, y, z order
    dim_to_coords = {}
    for i, spatial_idx in enumerate(spatial_indices):
        dim_name = self.dseg.dims[spatial_idx].lower()
        dim_to_coords[dim_name] = sampled_coords[i]

    # Get affine matrix
    affine_matrix = self.dseg.affine.matrix

    # Generate center coordinates in physical space
    centers = []
    for i in range(n_patches):
        # Get center voxel coordinates in (x, y, z) order
        center_voxel_xyz = np.array(
            [
                dim_to_coords["x"][i],
                dim_to_coords["y"][i],
                dim_to_coords["z"][i],
                1.0,
            ]
        )

        # Transform to physical coordinates
        center_physical = affine_matrix @ center_voxel_xyz
        center_xyz = center_physical[:3]

        # Convert to tuple
        center = tuple(center_xyz.tolist())
        centers.append(center)

    return centers

Bases: Transform

Affine transformation for spatial coordinate mapping.

Represents a 4x4 affine transformation matrix that can be used to transform 3D coordinates between different coordinate systems. Supports various operations including matrix multiplication, inversion, and point transformation.

Attributes:

  • matrix (ndarray) –

    4x4 affine transformation matrix

Functions

zarrnii.transform.AffineTransform.from_txt(path, invert=False) classmethod

Create AffineTransform from text file containing matrix.

Parameters:

  • path (Union[str, bytes]) –

    Path to text file containing 4x4 affine matrix

  • invert (bool, default: False ) –

    Whether to invert the matrix after loading

Returns:

  • 'AffineTransform'

    AffineTransform instance with loaded matrix

Raises:

  • OSError

    If file cannot be read

  • ValueError

    If file does not contain valid 4x4 matrix

Source code in zarrnii/transform.py
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
@classmethod
def from_txt(
    cls, path: Union[str, bytes], invert: bool = False
) -> "AffineTransform":
    """Create AffineTransform from text file containing matrix.

    Args:
        path: Path to text file containing 4x4 affine matrix
        invert: Whether to invert the matrix after loading

    Returns:
        AffineTransform instance with loaded matrix

    Raises:
        OSError: If file cannot be read
        ValueError: If file does not contain valid 4x4 matrix
    """
    matrix = np.loadtxt(path)
    if invert:
        matrix = np.linalg.inv(matrix)
    return cls(matrix=matrix)

zarrnii.transform.AffineTransform.from_array(matrix, invert=False) classmethod

Create AffineTransform from numpy array.

Parameters:

  • matrix (ndarray) –

    4x4 numpy array representing affine transformation

  • invert (bool, default: False ) –

    Whether to invert the matrix

Returns:

  • 'AffineTransform'

    AffineTransform instance with the matrix

Raises:

  • ValueError

    If matrix is not 4x4

Source code in zarrnii/transform.py
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
@classmethod
def from_array(cls, matrix: np.ndarray, invert: bool = False) -> "AffineTransform":
    """Create AffineTransform from numpy array.

    Args:
        matrix: 4x4 numpy array representing affine transformation
        invert: Whether to invert the matrix

    Returns:
        AffineTransform instance with the matrix

    Raises:
        ValueError: If matrix is not 4x4
    """
    if matrix.shape != (4, 4):
        raise ValueError(f"Matrix must be 4x4, got shape {matrix.shape}")

    if invert:
        matrix = np.linalg.inv(matrix)
    return cls(matrix=matrix)

zarrnii.transform.AffineTransform.identity() classmethod

Create identity transformation.

Returns:

  • 'AffineTransform'

    AffineTransform representing identity transformation (no change)

Source code in zarrnii/transform.py
100
101
102
103
104
105
106
107
@classmethod
def identity(cls) -> "AffineTransform":
    """Create identity transformation.

    Returns:
        AffineTransform representing identity transformation (no change)
    """
    return cls(matrix=np.eye(4, 4))

zarrnii.transform.AffineTransform.apply_transform(vecs)

Apply transformation to coordinate vectors.

Parameters:

  • vecs (ndarray) –

    Input coordinates to transform

Returns:

  • ndarray

    Transformed coordinates

Source code in zarrnii/transform.py
198
199
200
201
202
203
204
205
206
207
def apply_transform(self, vecs: np.ndarray) -> np.ndarray:
    """Apply transformation to coordinate vectors.

    Args:
        vecs: Input coordinates to transform

    Returns:
        Transformed coordinates
    """
    return self @ vecs

zarrnii.transform.AffineTransform.invert()

Return the inverse of the matrix transformation.

Returns:

  • 'AffineTransform'

    New AffineTransform with inverted matrix

Raises:

  • LinAlgError

    If matrix is singular and cannot be inverted

Source code in zarrnii/transform.py
209
210
211
212
213
214
215
216
217
218
def invert(self) -> "AffineTransform":
    """Return the inverse of the matrix transformation.

    Returns:
        New AffineTransform with inverted matrix

    Raises:
        np.linalg.LinAlgError: If matrix is singular and cannot be inverted
    """
    return AffineTransform.from_array(np.linalg.inv(self.matrix))

zarrnii.transform.AffineTransform.update_for_orientation(input_orientation, output_orientation)

Update the matrix to map from input orientation to output orientation.

Parameters:

  • input_orientation (str) –

    Current anatomical orientation (e.g., 'RPI')

  • output_orientation (str) –

    Target anatomical orientation (e.g., 'RAS')

Returns:

  • 'AffineTransform'

    New AffineTransform updated for orientation mapping

Raises:

  • ValueError

    If orientations are invalid or cannot be matched

Source code in zarrnii/transform.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def update_for_orientation(
    self, input_orientation: str, output_orientation: str
) -> "AffineTransform":
    """Update the matrix to map from input orientation to output orientation.

    Args:
        input_orientation: Current anatomical orientation (e.g., 'RPI')
        output_orientation: Target anatomical orientation (e.g., 'RAS')

    Returns:
        New AffineTransform updated for orientation mapping

    Raises:
        ValueError: If orientations are invalid or cannot be matched
    """

    # Define a mapping of anatomical directions to axis indices and flips
    axis_map = {
        "R": (0, 1),
        "L": (0, -1),
        "A": (1, 1),
        "P": (1, -1),
        "S": (2, 1),
        "I": (2, -1),
    }

    # Parse the input and output orientations
    input_axes = [axis_map[ax] for ax in input_orientation]
    output_axes = [axis_map[ax] for ax in output_orientation]

    # Create a mapping from input to output
    reorder_indices = [None] * 3
    flip_signs = [1] * 3

    for out_idx, (out_axis, out_sign) in enumerate(output_axes):
        for in_idx, (in_axis, in_sign) in enumerate(input_axes):
            if out_axis == in_axis:  # Match axis
                reorder_indices[out_idx] = in_idx
                flip_signs[out_idx] = out_sign * in_sign
                break

    # Reorder and flip the affine matrix
    reordered_matrix = np.zeros_like(self.matrix)
    for i, (reorder_idx, flip_sign) in enumerate(zip(reorder_indices, flip_signs)):
        if reorder_idx is None:
            raise ValueError(
                f"Cannot match all axes from {input_orientation} to {output_orientation}."
            )
        reordered_matrix[i, :3] = flip_sign * self.matrix[reorder_idx, :3]
        reordered_matrix[i, 3] = flip_sign * self.matrix[reorder_idx, 3]
    reordered_matrix[3, :] = self.matrix[3, :]  # Preserve the homogeneous row

    return AffineTransform.from_array(reordered_matrix)

Bases: Transform

Non-linear displacement field transformation.

Represents a displacement field transformation where each point in space has an associated displacement vector. Uses interpolation to compute displacements for arbitrary coordinates.

Attributes:

  • disp_xyz (ndarray) –

    Displacement vectors at grid points (4D array: x, y, z, vector_component)

  • disp_grid (Tuple[ndarray, ...]) –

    Grid coordinates for displacement field

  • disp_affine (AffineTransform) –

    Affine transformation from world to displacement field coordinates

Functions

zarrnii.transform.DisplacementTransform.from_nifti(path) classmethod

Create DisplacementTransform from NIfTI file.

Parameters:

  • path (Union[str, bytes]) –

    Path to NIfTI displacement field file

Returns:

  • 'DisplacementTransform'

    DisplacementTransform instance loaded from file

Raises:

  • OSError

    If file cannot be read

  • ValueError

    If file format is invalid

Source code in zarrnii/transform.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
@classmethod
def from_nifti(cls, path: Union[str, bytes]) -> "DisplacementTransform":
    """Create DisplacementTransform from NIfTI file.

    Args:
        path: Path to NIfTI displacement field file

    Returns:
        DisplacementTransform instance loaded from file

    Raises:
        OSError: If file cannot be read
        ValueError: If file format is invalid
    """
    disp_nib = nib.load(path)
    disp_xyz = disp_nib.get_fdata().squeeze()
    disp_affine = AffineTransform.from_array(disp_nib.affine)

    # Convert from ITK transform convention
    # ITK uses opposite sign convention for x and y displacements
    disp_xyz[:, :, :, 0] = -disp_xyz[:, :, :, 0]
    disp_xyz[:, :, :, 1] = -disp_xyz[:, :, :, 1]

    # Create grid coordinates
    disp_grid = (
        np.arange(disp_xyz.shape[0]),
        np.arange(disp_xyz.shape[1]),
        np.arange(disp_xyz.shape[2]),
    )

    return cls(
        disp_xyz=disp_xyz,
        disp_grid=disp_grid,
        disp_affine=disp_affine,
    )

zarrnii.transform.DisplacementTransform.apply_transform(vecs)

Apply displacement transformation to coordinate vectors.

Transforms input coordinates by interpolating displacement vectors from the displacement field and adding them to the input coordinates.

Parameters:

  • vecs (ndarray) –

    Input coordinates as numpy array. Shape should be (3, N) for N points or (3,) for single point

Returns:

  • ndarray

    Transformed coordinates with same shape as input

Notes

Points outside the displacement field domain are filled with zero displacement (no transformation).

Source code in zarrnii/transform.py
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
def apply_transform(self, vecs: np.ndarray) -> np.ndarray:
    """Apply displacement transformation to coordinate vectors.

    Transforms input coordinates by interpolating displacement vectors
    from the displacement field and adding them to the input coordinates.

    Args:
        vecs: Input coordinates as numpy array. Shape should be (3, N) for
            N points or (3,) for single point

    Returns:
        Transformed coordinates with same shape as input

    Notes:
        Points outside the displacement field domain are filled with
        zero displacement (no transformation).
    """
    # Transform points to voxel space of the displacement field
    vox_vecs = self.disp_affine.invert() @ vecs

    # Initialize displacement vectors
    disp_vecs = np.zeros(vox_vecs.shape)

    # Interpolate displacement for each spatial dimension (x, y, z)
    for ax in range(3):
        disp_vecs[ax, :] = interpn(
            self.disp_grid,
            self.disp_xyz[:, :, :, ax].squeeze(),
            vox_vecs[:3, :].T,
            method="linear",
            bounds_error=False,
            fill_value=0,
        )

    # Add displacement to original coordinates
    return vecs + disp_vecs