API Reference
Zarr-based image with NIfTI compatibility using NgffImage internally.
This class provides chainable operations on OME-Zarr data while maintaining compatibility with NIfTI workflows. It uses NgffImage objects internally for better multiscale support and metadata preservation.
Attributes:
-
ngff_image(NgffImage) –The internal NgffImage object containing data and metadata.
-
axes_order(str) –The order of the axes for NIfTI compatibility ('ZYX' or 'XYZ').
-
xyz_orientation(str) –The anatomical orientation string in XYZ axes order (e.g., 'RAS', 'LPI').
Constructor with backward compatibility for old signature.
Raises:
-
ValueError–If affine parameter is provided
Source code in zarrnii/core.py
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 | |
Attributes
zarrnii.ZarrNii.data
property
writable
Access the image data (dask array).
zarrnii.ZarrNii.darr
property
writable
Legacy property name for image data.
zarrnii.ZarrNii.shape
property
Shape of the image data.
zarrnii.ZarrNii.dims
property
Dimension names.
zarrnii.ZarrNii.scale
property
Scale information from NgffImage.
zarrnii.ZarrNii.translation
property
Translation information from NgffImage.
zarrnii.ZarrNii.name
property
Image name from NgffImage.
zarrnii.ZarrNii.orientation
property
writable
Legacy property for backward compatibility.
Returns the xyz_orientation attribute to maintain backward compatibility with code that expects the 'orientation' property.
Returns:
-
str(str) –The anatomical orientation string in XYZ axes order
zarrnii.ZarrNii.affine
property
Affine transformation matrix derived from NgffImage scale and translation.
Returns:
-
AffineTransform(AffineTransform) –4x4 affine transformation matrix in axes order of self.
zarrnii.ZarrNii.axes
property
Axes metadata - derived from NgffImage for compatibility.
zarrnii.ZarrNii.coordinate_transformations
property
Coordinate transformations - derived from NgffImage scale/translation.
zarrnii.ZarrNii.omero
property
Omero metadata object.
Functions
zarrnii.ZarrNii.get_affine_transform(axes_order=None)
Get AffineTransform object from NgffImage metadata.
Parameters:
-
axes_order(str, default:None) –Spatial axes order, defaults to self.axes_order
Returns:
-
AffineTransform–AffineTransform object
Source code in zarrnii/core.py
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 | |
zarrnii.ZarrNii.get_zarr_store_info()
Extract zarr store information from the dask array if available.
Attempts to extract the underlying zarr store path and metadata from the dask array graph. This information can be used for direct zarr access without triggering dask compute() operations.
Returns:
-
Optional[Dict[str, Any]]–Dictionary containing store information if available: - 'store_path': Path or URI to the zarr store - 'dataset_path': Path to the dataset within the zarr group - 'array_shape': Shape of the full array
-
Optional[Dict[str, Any]]–Returns None if the data is not backed by a zarr store.
Raises:
-
ValueError–If the dask array shape doesn't match the zarr array shape, indicating lazy operations that change shape (e.g., downsampling).
Notes
- Only works if the dask array was created from zarr using da.from_zarr()
- Returns None for in-memory arrays or arrays from other sources
- Validates that zarr array shape matches dask array shape to ensure compatibility with direct zarr access
Source code in zarrnii/core.py
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 | |
zarrnii.ZarrNii.from_ngff_image(ngff_image, axes_order='ZYX', xyz_orientation='RAS', omero=None)
classmethod
Create ZarrNii from an existing NgffImage.
Parameters:
-
ngff_image(NgffImage) –NgffImage to wrap
-
axes_order(str, default:'ZYX') –Spatial axes order for NIfTI compatibility
-
xyz_orientation(str, default:'RAS') –Anatomical orientation string in XYZ axes order
-
omero(Optional[object], default:None) –Optional omero metadata object
Returns:
-
'ZarrNii'–ZarrNii instance
Source code in zarrnii/core.py
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 | |
zarrnii.ZarrNii.from_darr(darr, axes_order='ZYX', orientation='RAS', spacing=(1.0, 1.0, 1.0), origin=(0.0, 0.0, 0.0), name='image', omero=None, affine=None, **kwargs)
classmethod
Create ZarrNii from dask array (legacy compatibility constructor).
Parameters:
-
darr(Array) –Dask array containing image data
-
axes_order(str, default:'ZYX') –Spatial axes order
-
orientation(str, default:'RAS') –Anatomical orientation string
-
spacing(Tuple[float, float, float], default:(1.0, 1.0, 1.0)) –Voxel spacing, in axes_order
-
origin(Tuple[float, float, float], default:(0.0, 0.0, 0.0)) –Origin offset, in axes_order
-
name(str, default:'image') –Image name
-
omero(Optional[object], default:None) –Optional omero metadata
-
affine(Optional[AffineTransform], default:None) –Deprecated parameter - no longer supported
Returns:
-
'ZarrNii'–ZarrNii instance
Raises:
-
ValueError–If affine parameter is provided
Source code in zarrnii/core.py
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | |
zarrnii.ZarrNii.from_ome_zarr(store_or_path, level=0, channels=None, channel_labels=None, timepoints=None, storage_options=None, axes_order='ZYX', orientation=None, downsample_near_isotropic=False, chunks='auto', rechunk=False)
classmethod
Load ZarrNii from OME-Zarr store with flexible options.
Creates a ZarrNii instance from an OME-Zarr store, supporting multiscale pyramids, channel/timepoint selection, and various storage backends. Automatically handles metadata extraction and format conversion.
Parameters:
-
store_or_path(Union[str, Any]) –Store or path to OME-Zarr file. Supports: - Local file paths - Remote URLs (s3://, http://, etc.) - ZIP files (.zip extension) - Zarr store objects
-
level(int, default:0) –Pyramid level to load (0 = highest resolution). If level exceeds available levels, applies lazy downsampling
-
channels(Optional[List[int]], default:None) –List of channel indices to load (0-based). Mutually exclusive with channel_labels
-
channel_labels(Optional[List[str]], default:None) –List of channel names to load by label. Requires OMERO metadata. Mutually exclusive with channels
-
timepoints(Optional[List[int]], default:None) –List of timepoint indices to load (0-based). If None, loads all available timepoints
-
storage_options(Optional[Dict[str, Any]], default:None) –Additional options for zarr storage backend (e.g., credentials for cloud storage)
-
axes_order(str, default:'ZYX') –Spatial axis order for NIfTI compatibility. Either "ZYX" or "XYZ"
-
orientation(Optional[str], default:None) –Default anatomical orientation if not in metadata. Standard orientations like "RAS", "LPI", etc. This is always interpreted in XYZ axes order for consistency. This setting will override any orientation defined in the OME zarr metadata
-
downsample_near_isotropic(bool, default:False) –If True, automatically downsample dimensions with smaller voxel sizes to achieve near-isotropic resolution
-
chunks(tuple[int, Ellipsis] | Literal['auto'], default:'auto') –chunking strategy, or explicit chunk sizes to use if not automatic
-
rechunk(bool, default:False) –If True, rechunks the dataset after lazy loading, based on the chunks parameter
Returns:
-
'ZarrNii'–ZarrNii instance with loaded data and metadata
Raises:
-
ValueError–If both channels and channel_labels are specified, or if invalid level/indices are provided
-
FileNotFoundError–If store_or_path does not exist
-
KeyError–If specified channel labels are not found
-
IOError–If unable to read from the storage backend
Examples:
>>> # Load full resolution data
>>> znii = ZarrNii.from_ome_zarr("/path/to/data.zarr")
>>> # Load specific channels and pyramid level
>>> znii = ZarrNii.from_ome_zarr(
... "/path/to/data.zarr",
... level=1,
... channels=[0, 2],
... orientation="LPI"
... )
>>> # Load from cloud storage
>>> znii = ZarrNii.from_ome_zarr(
... "s3://bucket/data.zarr",
... storage_options={"key": "access_key", "secret": "secret"}
... )
Notes
Orientation Metadata Backwards Compatibility:
This method implements backwards compatibility for orientation metadata:
-
Override: Setting the orientation here will override any orientation defined in the OME Zarr metadata.
-
Zarr Metadata: Checks for 'xyz_orientation' first (new format), then falls back to 'orientation' (legacy format)
-
Legacy Fallback: When only legacy 'orientation' is found, the orientation string is automatically reversed to convert from ZYX-based encoding (legacy) to XYZ-based encoding (current standard)
-
Default Fallback: If no orientation metadata is found, uses RAS orientation as the default.
Examples of the conversion: - Legacy 'orientation'='SAR' (ZYX) → 'xyz_orientation'='RAS' (XYZ) - Legacy 'orientation'='IPL' (ZYX) → 'xyz_orientation'='LPI' (XYZ)
This ensures consistent orientation handling while maintaining backwards compatibility with existing OME-Zarr files that use the legacy format.
Source code in zarrnii/core.py
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 | |
zarrnii.ZarrNii.from_nifti(path, chunks='auto', axes_order='XYZ', name=None, as_ref=False, zooms=None)
classmethod
Load ZarrNii from NIfTI file with flexible loading options.
Creates a ZarrNii instance from a NIfTI file, automatically converting the data to dask arrays and extracting spatial transformation information. Supports both full data loading and reference-only loading for memory efficiency. For 4D NIfTI files, the 4th dimension is treated as channels (XYZC ordering, analogous to CZYX in OME-Zarr).
Parameters:
-
path(Union[str, bytes]) –File path to NIfTI file (.nii, .nii.gz, .img/.hdr)
-
chunks(Union[str, Tuple[int, ...]], default:'auto') –Dask array chunking strategy. Can be: - "auto": Automatic chunking based on file size - Tuple of ints: Manual chunk sizes for each dimension - Dict mapping axis to chunk size
-
axes_order(str, default:'XYZ') –Spatial axis ordering convention. Either: - "XYZ": X=left-right, Y=anterior-posterior, Z=inferior-superior - "ZYX": Z=inferior-superior, Y=anterior-posterior, X=left-right
-
name(Optional[str], default:None) –Optional name for the resulting NgffImage. If None, uses filename without extension
-
as_ref(bool, default:False) –If True, creates empty dask array with correct shape/metadata without loading actual image data (memory efficient for templates)
-
zooms(Optional[Tuple[float, float, float]], default:None) –Target voxel spacing as (x, y, z) in mm. Only valid when as_ref=True. Adjusts shape and affine accordingly
Returns:
-
'ZarrNii'–ZarrNii instance containing NIfTI data and spatial metadata. If the
-
'ZarrNii'–NIfTI file contains channel labels in header extensions, they will be
-
'ZarrNii'–preserved in OMERO metadata.
Raises:
-
ValueError–If zooms specified with as_ref=False, or invalid axes_order
-
FileNotFoundError–If NIfTI file does not exist
-
OSError–If unable to read NIfTI file
-
ImageFileError–If file is not valid NIfTI
Examples:
>>> # Load full NIfTI data
>>> znii = ZarrNii.from_nifti("/path/to/brain.nii.gz")
>>> # Load with custom chunking and axis order
>>> znii = ZarrNii.from_nifti(
... "/path/to/data.nii",
... chunks=(64, 64, 64),
... axes_order="ZYX"
... )
>>> # Load 4D NIfTI with multiple channels
>>> znii = ZarrNii.from_nifti("/path/to/multichannel.nii.gz")
>>> print(znii.list_channels()) # Shows channel labels if stored
>>> # Create reference with target resolution
>>> znii_ref = ZarrNii.from_nifti(
... "/path/to/template.nii.gz",
... as_ref=True,
... zooms=(2.0, 2.0, 2.0)
... )
Notes
- The method automatically handles NIfTI orientation codes and converts them to the specified axes_order for consistency with OME-Zarr workflows
- For 4D NIfTI files, the 4th dimension is interpreted as channels (XYZC)
- Channel labels stored in NIfTI header extensions are automatically loaded
Source code in zarrnii/core.py
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 | |
zarrnii.ZarrNii.crop(bbox_min, bbox_max=None, spatial_dims=None, physical_coords=False)
Extract a spatial region or multiple regions from the image.
Crops the image to the specified bounding box coordinates, preserving all metadata and non-spatial dimensions (channels, time). The cropping is performed in voxel coordinates by default, or physical coordinates if specified. Can crop a single region or multiple regions at once.
Parameters:
-
bbox_min(Union[Tuple[float, ...], List[Tuple[Tuple[float, ...], Tuple[float, ...]]]]) –Either: - Minimum corner coordinates of bounding box as tuple (when bbox_max is provided). Length should match number of spatial dimensions (x, y, z order) - List of (bbox_min, bbox_max) tuples for batch cropping (when bbox_max is None)
-
bbox_max(Optional[Tuple[float, ...]], default:None) –Maximum corner coordinates of bounding box as tuple. Length should match number of spatial dimensions (x, y, z order). Should be None when bbox_min is a list of bounding boxes.
-
spatial_dims(Optional[List[str]], default:None) –Names of spatial dimensions to crop. If None, automatically derived from axes_order ("z","y","x" for ZYX or "x","y","z" for XYZ)
-
physical_coords(bool, default:False) –If True, bbox_min and bbox_max are in physical/world coordinates (mm). If False, they are in voxel coordinates. Default is False.
Returns:
-
Union['ZarrNii', List['ZarrNii']]–New ZarrNii instance with cropped data (single crop) or list of
-
Union['ZarrNii', List['ZarrNii']]–ZarrNii instances (batch crop) with updated spatial metadata
Raises:
-
ValueError–If bbox coordinates are invalid or out of bounds, or if both list and bbox_max are provided
-
IndexError–If bbox dimensions don't match spatial dimensions
Examples:
>>> # Crop 3D region (voxel coordinates)
>>> cropped = znii.crop((10, 20, 30), (110, 120, 130))
>>> # Crop with physical coordinates
>>> cropped = znii.crop((10.5, 20.5, 30.5), (110.5, 120.5, 130.5),
... physical_coords=True)
>>> # Crop with explicit spatial dimensions
>>> cropped = znii.crop(
... (50, 60, 70), (150, 160, 170),
... spatial_dims=["x", "y", "z"]
... )
>>> # Batch crop multiple regions
>>> bboxes = [
... ((10, 20, 30), (60, 70, 80)),
... ((100, 110, 120), (150, 160, 170))
... ]
>>> cropped_list = znii.crop(bboxes, physical_coords=True)
Notes
- Coordinates are in voxel space (0-based indexing) by default
- Physical coordinates are in RAS orientation (Right-Anterior-Superior)
- The cropped region includes bbox_min but excludes bbox_max
- All non-spatial dimensions (channels, time) are preserved
- Spatial transformations are automatically updated
- When batch cropping, all patches share the same spatial_dims and physical_coords settings
Source code in zarrnii/core.py
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 | |
zarrnii.ZarrNii.crop_with_bounding_box(bbox_min, bbox_max, ras_coords=False)
Legacy method name for crop.
Parameters:
-
bbox_min–Minimum corner coordinates
-
bbox_max–Maximum corner coordinates
-
ras_coords–If True, coordinates are in RAS physical space (deprecated, use physical_coords parameter of crop() instead)
Source code in zarrnii/core.py
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 | |
zarrnii.ZarrNii.crop_centered(centers, patch_size, spatial_dims=None, fill_value=0.0)
Extract fixed-size patches centered at specified coordinates.
Crops the image to extract patches of a fixed size (in voxels) centered at the given physical coordinates. This is particularly useful for machine learning workflows where training patches must have consistent dimensions. The method can process a single center or multiple centers at once.
Patches that extend beyond image boundaries are padded with the fill_value to ensure all patches have exactly the requested size.
Parameters:
-
centers(Union[Tuple[float, float, float], List[Tuple[float, float, float]]]) –Either: - Single center coordinate as (x, y, z) tuple in physical space (mm) - List of center coordinates for batch processing
-
patch_size(Tuple[int, int, int]) –Size of the patch in voxels as (x, y, z) tuple. This defines the dimensions of each cropped region in voxel space. All returned patches will have exactly this size.
-
spatial_dims(Optional[List[str]], default:None) –Names of spatial dimensions to crop. If None, automatically derived from axes_order ("z","y","x" for ZYX or "x","y","z" for XYZ). Default is None.
-
fill_value(float, default:0.0) –Value to use for padding when patches extend beyond image boundaries. Default is 0.0.
Returns:
-
Union['ZarrNii', List['ZarrNii']]–Single ZarrNii instance (when centers is a single tuple) or list of
-
Union['ZarrNii', List['ZarrNii']]–ZarrNii instances (when centers is a list) with cropped data and
-
Union['ZarrNii', List['ZarrNii']]–updated spatial metadata. All patches will have exactly the shape
-
Union['ZarrNii', List['ZarrNii']]–specified by patch_size (plus any non-spatial dimensions).
Raises:
-
ValueError–If coordinates/dimensions are invalid
-
IndexError–If patch_size dimensions don't match spatial dimensions
Examples:
>>> # Extract single 256x256x256 voxel patch at a coordinate
>>> center = (50.0, 60.0, 70.0) # physical coordinates in mm
>>> patch = znii.crop_centered(center, patch_size=(256, 256, 256))
>>>
>>> # Extract multiple patches for ML training
>>> centers = [
... (50.0, 60.0, 70.0),
... (100.0, 110.0, 120.0),
... (150.0, 160.0, 170.0)
... ]
>>> patches = znii.crop_centered(centers, patch_size=(128, 128, 128))
>>> # Returns list of 3 ZarrNii instances, all with shape (1, 128, 128, 128)
>>>
>>> # Use with atlas sampling for ML training workflow
>>> centers = atlas.sample_region_patches(
... n_patches=100,
... region_ids="cortex",
... seed=42
... )
>>> patches = image.crop_centered(centers, patch_size=(256, 256, 256))
>>>
>>> # Use custom fill value for padding
>>> patch = znii.crop_centered(center, patch_size=(256, 256, 256), fill_value=-1.0)
Notes
- Centers are in physical/world coordinates (mm), always in (x, y, z) order
- patch_size is in voxels, in (x, y, z) order
- The patch is centered at the given coordinate, extending ±patch_size/2
- If patch_size is odd, the center voxel is included
- Patches near boundaries are padded with fill_value to maintain size
- All patches are guaranteed to have exactly the requested size
- Useful for ML training where fixed patch sizes are required
- Coordinates from atlas.sample_region_patches() can be used directly
Source code in zarrnii/core.py
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 | |
zarrnii.ZarrNii.downsample(factors=None, along_x=1, along_y=1, along_z=1, level=None, spatial_dims=None)
Reduce image resolution by downsampling.
Performs spatial downsampling by averaging blocks of voxels, effectively reducing image resolution and size. Multiple parameter options provide flexibility for different downsampling strategies.
Parameters:
-
factors(Optional[Union[int, List[int]]], default:None) –Downsampling factors for spatial dimensions. Can be: - int: Same factor applied to all spatial dimensions - List[int]: Per-dimension factors matching spatial_dims order - None: Use other parameters to determine factors
-
along_x(int, default:1) –Downsampling factor for X dimension (legacy parameter)
-
along_y(int, default:1) –Downsampling factor for Y dimension (legacy parameter)
-
along_z(int, default:1) –Downsampling factor for Z dimension (legacy parameter)
-
level(Optional[int], default:None) –Power-of-2 downsampling level (factors = 2^level). Takes precedence over along_* parameters
-
spatial_dims(Optional[List[str]], default:None) –Names of spatial dimensions. If None, derived from axes_order
Returns:
-
'ZarrNii'–New ZarrNii instance with downsampled data and updated metadata
Raises:
-
ValueError–If conflicting parameters provided or invalid factors
Examples:
>>> # Isotropic downsampling by factor of 2
>>> downsampled = znii.downsample(factors=2)
>>> # Anisotropic downsampling
>>> downsampled = znii.downsample(factors=[1, 2, 2])
>>> # Using legacy parameters
>>> downsampled = znii.downsample(along_x=2, along_y=2, along_z=1)
>>> # Power-of-2 downsampling
>>> downsampled = znii.downsample(level=2) # factors = 4
Notes
- Downsampling uses block averaging for anti-aliasing
- Spatial transformations are automatically scaled
- Non-spatial dimensions (channels, time) are preserved
- Original data remains unchanged (creates new instance)
Source code in zarrnii/core.py
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 | |
zarrnii.ZarrNii.upsample(along_x=1, along_y=1, along_z=1, to_shape=None)
Upsamples the ZarrNii instance using scipy.ndimage.zoom.
Parameters:
-
along_x(int, default:1) –Upsampling factor along the X-axis (default: 1).
-
along_y(int, default:1) –Upsampling factor along the Y-axis (default: 1).
-
along_z(int, default:1) –Upsampling factor along the Z-axis (default: 1).
-
to_shape(tuple, default:None) –Target shape for upsampling. Should include all dimensions (e.g.,
(c, z, y, x)for ZYX or(c, x, y, z)for XYZ). If provided,along_x,along_y, andalong_zare ignored.
Returns:
-
ZarrNii–A new ZarrNii instance with the upsampled data and updated affine.
Notes
- This method supports both direct scaling via
along_*factors or target shape viato_shape. - If
to_shapeis provided, chunk sizes and scaling factors are dynamically calculated. - The affine matrix is updated to reflect the new voxel size after upsampling.
Example
Upsample with scaling factors
upsampled_znimg = znimg.upsample(along_x=2, along_y=2, along_z=2)
Upsample to a specific shape
upsampled_znimg = znimg.upsample(to_shape=(1, 256, 256, 256))
Source code in zarrnii/core.py
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 | |
zarrnii.ZarrNii.get_bounded_subregion(points)
Extracts a bounded subregion of the dask array containing the specified points, along with the grid points for interpolation.
If the points extend beyond the domain of the dask array, the extent is capped
at the boundaries. If all points are outside the domain, the function returns
(None, None).
Parameters:
-
points(ndarray) –Nx3 or Nx4 array of coordinates in the array's space. If Nx4, the last column is assumed to be the homogeneous coordinate and is ignored.
Returns:
-
tuple–grid_points (tuple): A tuple of three 1D arrays representing the grid points along each axis (X, Y, Z) in the subregion. subvol (np.ndarray or None): The extracted subregion as a NumPy array. Returns
Noneif all points are outside the array domain.
Notes
- The function uses
compute()on the dask array to immediately load the subregion, as Dask doesn't support the type of indexing required for interpolation. - A padding of 1 voxel is applied around the extent of the points.
Example
grid_points, subvol = znimg.get_bounded_subregion(points) if subvol is not None: print("Subvolume shape:", subvol.shape)
Source code in zarrnii/core.py
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 | |
zarrnii.ZarrNii.apply_transform(*transforms, ref_znimg, spatial_dims=None)
Apply spatial transformations to image data.
Transforms the image data to align with a reference image space using the provided transformation(s). This enables registration, resampling, and coordinate system conversions.
Parameters:
-
*transforms(Transform, default:()) –Variable number of Transform objects to apply sequentially. Supported transform types: - AffineTransform: Linear transformations (rotation, scaling, translation) - DisplacementTransform: Non-linear deformation fields
-
ref_znimg('ZarrNii') –Reference ZarrNii image defining the target coordinate system, grid spacing, and field of view for the output
-
spatial_dims(Optional[List[str]], default:None) –Names of spatial dimensions for transformation. If None, automatically derived from axes_order
Returns:
-
'ZarrNii'–New ZarrNii instance with transformed data in reference space
Raises:
-
ValueError–If no transforms provided or reference image incompatible
-
TypeError–If transforms are not valid Transform objects
Examples:
>>> # Apply affine transformation
>>> affine = AffineTransform.from_txt("transform.txt")
>>> transformed = moving.apply_transform(affine, ref_znimg=reference)
>>> # Apply multiple transforms sequentially
>>> affine = AffineTransform.identity()
>>> warp = DisplacementTransform.from_nifti("warp.nii.gz")
>>> result = moving.apply_transform(affine, warp, ref_znimg=reference)
Notes
- Transformations are applied in the order specified
- Output data inherits spatial properties from ref_znimg
- Uses interpolation for non-integer coordinate mappings
- Non-spatial dimensions (channels, time) are preserved
Source code in zarrnii/core.py
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 | |
zarrnii.ZarrNii.to_ome_zarr(store_or_path, max_layer=4, scale_factors=None, backend='ome-zarr-py', **kwargs)
Save to OME-Zarr store with multiscale pyramid.
Creates an OME-Zarr dataset with automatic multiscale pyramid generation for efficient visualization and processing at multiple resolutions. Preserves spatial metadata and supports various storage backends.
Parameters:
-
store_or_path(Union[str, Any]) –Target location for OME-Zarr store. Supports: - Local directory path - Remote URLs (s3://, gs://, etc.) - ZIP files (.zip extension for compressed storage) - Zarr store objects
-
max_layer(int, default:4) –Maximum number of pyramid levels to create (including level 0). Higher values create more downsampled levels
-
scale_factors(Optional[List[int]], default:None) –Custom downsampling factors for each pyramid level. If None, uses powers of 2: [2, 4, 8, 16, ...]
-
backend(str, default:'ome-zarr-py') –Backend library to use for writing. Options: - 'ngff-zarr': Use ngff-zarr library (default) - 'ome-zarr-py': Use ome-zarr-py library for better dask integration
-
**kwargs(Any, default:{}) –Additional arguments passed to the save function. For 'ngff-zarr': passed to to_ngff_zarr function For 'ome-zarr-py': passed to write_image (e.g., scaling_method, compute)
Returns:
-
'ZarrNii'–Self for method chaining
Raises:
-
OSError–If unable to write to target location
-
ValueError–If invalid scale_factors or backend provided
Examples:
>>> # Save with default pyramid levels
>>> znii.to_ome_zarr("/path/to/output.zarr")
>>> # Save to compressed ZIP with custom pyramid
>>> znii.to_ome_zarr(
... "/path/to/output.zarr.zip",
... max_layer=3,
... scale_factors=[2, 4]
... )
>>> # Use ome-zarr-py backend for better dask performance
>>> znii.to_ome_zarr(
... "/path/to/output.zarr",
... backend="ome-zarr-py",
... scaling_method="gaussian"
... )
>>> # Chain with other operations
>>> result = (znii.downsample(2)
... .crop((0,0,0), (100,100,100))
... .to_ome_zarr("processed.zarr"))
Notes
- OME-Zarr files are always saved in ZYX axis order
- Automatic axis reordering if current order is XYZ
- Spatial transformations and metadata are preserved
- Orientation information is stored using the new 'xyz_orientation' metadata key for consistency and future compatibility
- The 'ome-zarr-py' backend provides better performance with dask and dask distributed workflows
Source code in zarrnii/core.py
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 | |
zarrnii.ZarrNii.to_nifti(filename=None)
Convert to NIfTI format with automatic dimension handling.
Converts the ZarrNii image to NIfTI-1 format, handling dimension reordering, singleton dimension removal, and spatial transformation conversion. NIfTI files are always written in XYZ axis order.
For multi-channel data, the 4th dimension is used for channels (XYZC), and channel labels are preserved in NIfTI header extensions.
Parameters:
-
filename(Optional[Union[str, bytes]], default:None) –Output file path for saving. Supported extensions: - .nii: Uncompressed NIfTI - .nii.gz: Compressed NIfTI (recommended) If None, returns nibabel image object without saving
Returns:
-
Union[Nifti1Image, str]–If filename is None: nibabel.Nifti1Image object
-
Union[Nifti1Image, str]–If filename provided: path to saved file
Raises:
-
ValueError–If data has non-singleton time dimension (time is not supported in NIfTI output, but multiple channels are supported)
-
OSError–If unable to write to specified filename
Notes
- Automatically reorders data from ZYX to XYZ if necessary
- Removes singleton time dimensions automatically
- Supports multi-channel data via 4th dimension (XYZC ordering)
- Channel labels are saved in NIfTI header extensions as JSON
- Spatial transformations are converted to NIfTI affine format
Examples:
>>> # Save to compressed NIfTI file
>>> znii.to_nifti("output.nii.gz")
>>> # Get nibabel object without saving
>>> nifti_img = znii.to_nifti()
>>> print(nifti_img.shape)
>>> # Save multi-channel data with channel labels preserved
>>> znii.to_nifti("multichannel.nii.gz")
>>> # Channel labels are automatically saved in header extensions
>>> # Select specific channels before saving
>>> znii.select_channels([0, 2]).to_nifti("selected.nii.gz")
Source code in zarrnii/core.py
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 | |
zarrnii.ZarrNii.to_tiff_stack(filename_pattern, channel=None, timepoint=None, compress=True, dtype='uint16', rescale=True)
Save data as a stack of 2D TIFF images.
Saves the image data as a series of 2D TIFF files, with each Z-slice saved as a separate file. This format is useful for compatibility with tools that don't support OME-Zarr or napari plugins that require individual TIFF files.
Parameters:
-
filename_pattern(str) –Output filename pattern. Should contain '{z:04d}' or similar format specifier for the Z-slice number. Examples: - "output_z{z:04d}.tif" - "data/slice_{z:03d}.tiff" If pattern doesn't contain format specifier, '_{z:04d}' is appended before the extension.
-
channel(Optional[int], default:None) –Channel index to save (0-based). If None and data has multiple channels, all channels will be saved as separate channel dimensions in each TIFF file (multi-channel TIFFs).
-
timepoint(Optional[int], default:None) –Timepoint index to save (0-based). If None and data has multiple timepoints, raises ValueError (must select single timepoint).
-
compress(bool, default:True) –Whether to use LZW compression (default: True)
-
dtype(Optional[str], default:'uint16') –Output data type for TIFF files. Options: - 'uint8': 8-bit unsigned integer (0-255) - 'uint16': 16-bit unsigned integer (0-65535) [default] - 'int16': 16-bit signed integer (-32768 to 32767) - 'float32': 32-bit float (preserves original data) Default 'uint16' provides good range and compatibility.
-
rescale(bool, default:True) –Whether to rescale data to fit the output dtype range. If True, data is linearly scaled from [min, max] to the full range of the output dtype. If False, data is clipped to the output dtype range. Default: True
Returns:
-
str–Base directory path where files were saved
Raises:
-
ValueError–If data has multiple timepoints but none selected, or if selected channel/timepoint is out of range, or if dtype is not supported
-
OSError–If unable to write to specified directory
Examples:
>>> # Save as 16-bit with auto-rescaling (default, recommended)
>>> znii.to_tiff_stack("output_z{z:04d}.tif")
>>> # Save as 8-bit for smaller file sizes
>>> znii.to_tiff_stack("output_z{z:04d}.tif", dtype='uint8')
>>> # Save specific channel without rescaling
>>> znii.to_tiff_stack("channel0_z{z:04d}.tif", channel=0, rescale=False)
>>> # Save as float32 to preserve original precision
>>> znii.to_tiff_stack("precise_z{z:04d}.tif", dtype='float32')
Notes
- Z-dimension becomes the stack (file) dimension
- Time and channel dimensions are handled as specified
- Spatial transformations are not preserved in TIFF format
- For 5D data (T,C,Z,Y,X), you must select a single timepoint
- Multi-channel data can be saved as multi-channel TIFFs or selected
- Data type conversion helps ensure compatibility with analysis tools
- uint16 is recommended for most scientific applications (good range + compatibility)
Source code in zarrnii/core.py
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 | |
zarrnii.ZarrNii.from_imaris(path, level=0, timepoint=0, channel=0, chunks='auto', axes_order='ZYX', orientation='RAS')
classmethod
Load from Imaris (.ims) file format.
Imaris files use HDF5 format with specific dataset structure. This method requires the 'imaris' extra dependency (h5py).
Parameters:
-
path(str) –Path to Imaris (.ims) file
-
level(int, default:0) –Resolution level to load (0 = full resolution)
-
timepoint(int, default:0) –Time point to load (default: 0)
-
channel(int, default:0) –Channel to load (default: 0)
-
chunks(str, default:'auto') –Chunking strategy for dask array
-
axes_order(str, default:'ZYX') –Spatial axes order for compatibility (default: "ZYX")
-
orientation(str, default:'RAS') –Default orientation (default: "RAS")
Returns:
-
'ZarrNii'–ZarrNii instance
Raises:
-
ImportError–If h5py is not available
-
ValueError–If the file is not a valid Imaris file
Source code in zarrnii/core.py
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 | |
zarrnii.ZarrNii.to_imaris(path, compression='gzip', compression_opts=6)
Save to Imaris (.ims) file format using HDF5.
This method creates Imaris files compatible with Imaris software by following the exact HDF5 structure from correctly-formed reference files. All attributes use byte-array encoding as required by Imaris.
Parameters:
-
path(str) –Output path for Imaris (.ims) file
-
compression(str, default:'gzip') –HDF5 compression method (default: "gzip")
-
compression_opts(int, default:6) –Compression level (default: 6)
Returns:
-
str(str) –Path to the saved file
Raises:
-
ImportError–If h5py is not available
Notes
- Imaris files are always saved in ZYX axis order
- Automatic axis reordering from XYZ to ZYX if needed
- Spatial transformations and metadata are preserved
Source code in zarrnii/core.py
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 | |
zarrnii.ZarrNii.copy(name=None)
Create a copy of this ZarrNii.
Returns:
-
'ZarrNii'–New ZarrNii with copied data
Source code in zarrnii/core.py
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 | |
zarrnii.ZarrNii.compute()
Compute the dask array and return the underlying NgffImage.
This triggers computation of any lazy operations and returns the NgffImage with computed data.
Returns:
-
NgffImage–NgffImage with computed data
Source code in zarrnii/core.py
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 | |
zarrnii.ZarrNii.get_orientation()
Get the anatomical orientation of the dataset.
This function returns the orientation string (e.g., 'RAS', 'LPI') of the dataset.
Returns:
-
str(str) –The orientation string corresponding to the dataset's anatomical orientation.
Source code in zarrnii/core.py
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 | |
zarrnii.ZarrNii.get_zooms(axes_order=None)
Get voxel spacing (zooms) from NgffImage scale.
Parameters:
-
axes_order(str, default:None) –Spatial axes order, defaults to self.axes_order
Returns:
-
ndarray–Array of voxel spacings
Source code in zarrnii/core.py
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 | |
zarrnii.ZarrNii.get_origin(axes_order=None)
Get origin (translation) from NgffImage.
Parameters:
-
axes_order(str, default:None) –Spatial axes order, defaults to self.axes_order
Returns:
-
ndarray–Array of origin coordinates
Source code in zarrnii/core.py
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 | |
zarrnii.ZarrNii.get_affine_matrix(axes_order=None)
Construct a 4x4 affine matrix from NGFF metadata (scale/translation), and align it to self.orientation (if provided) using nibabel.orientations.
Parameters:
-
axes_order(str, default:None) –Spatial axes order, e.g. 'ZYX' or 'XYZ'. Defaults to 'XYZ'.
Returns:
-
ndarray–np.ndarray: 4x4 affine matrix.
Source code in zarrnii/core.py
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 | |
zarrnii.ZarrNii.apply_transform_ref_to_flo_indices(*transforms, ref_znimg, indices)
Transform indices from reference to floating space.
Source code in zarrnii/core.py
4514 4515 4516 4517 | |
zarrnii.ZarrNii.apply_transform_flo_to_ref_indices(*transforms, ref_znimg, indices)
Transform indices from floating to reference space.
Source code in zarrnii/core.py
4519 4520 4521 4522 | |
zarrnii.ZarrNii.list_channels()
Get list of available channel labels from OMERO metadata.
Extracts channel labels from OMERO metadata if available, providing human-readable names for multi-channel datasets.
Returns:
-
List[str]–List of channel label strings. Empty list if no OMERO metadata
-
List[str]–is available or no channels are defined.
Examples:
>>> # Check available channels
>>> labels = znii.list_channels()
>>> print(f"Available channels: {labels}")
>>> # ['DAPI', 'GFP', 'RFP', 'Cy5']
>>> # Select specific channels by label
>>> selected = znii.select_channels(channel_labels=['DAPI', 'GFP'])
Notes
- Requires OMERO metadata to be present in the dataset
- Returns empty list for datasets without channel metadata
- Labels are extracted from the 'label' field of each channel
Source code in zarrnii/core.py
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 | |
zarrnii.ZarrNii.select_channels(channels=None, channel_labels=None)
Select specific channels from multi-channel image data.
Creates a new ZarrNii instance containing only the specified channels, reducing memory usage and focusing analysis on channels of interest. Supports selection by both numeric indices and human-readable labels.
Parameters:
-
channels(Optional[List[int]], default:None) –List of 0-based channel indices to select. Mutually exclusive with channel_labels
-
channel_labels(Optional[List[str]], default:None) –List of channel names to select by label. Requires OMERO metadata. Mutually exclusive with channels
Returns:
-
'ZarrNii'–New ZarrNii instance with selected channels and updated metadata
Raises:
-
ValueError–If both channels and channel_labels specified, or if channel_labels used without OMERO metadata, or if labels not found
-
IndexError–If channel indices are out of range
Examples:
>>> # Select channels by index
>>> selected = znii.select_channels(channels=[0, 2])
>>> # Select channels by label (requires OMERO metadata)
>>> selected = znii.select_channels(channel_labels=['DAPI', 'GFP'])
>>> # Check available labels first
>>> available = znii.list_channels()
>>> print(f"Available: {available}")
>>> selected = znii.select_channels(channel_labels=available[:2])
Notes
- Preserves all spatial dimensions and timepoints
- Updates OMERO metadata to reflect selected channels
- Maintains spatial transformations and other metadata
- Channel order in output matches selection order
Source code in zarrnii/core.py
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 | |
zarrnii.ZarrNii.select_timepoints(timepoints=None)
Select timepoints from the image data and return a new ZarrNii instance.
Parameters:
-
timepoints(Optional[List[int]], default:None) –Timepoint indices to select
Returns:
-
'ZarrNii'–New ZarrNii instance with selected timepoints
Source code in zarrnii/core.py
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 | |
zarrnii.ZarrNii.to_ngff_image(name=None)
Convert to NgffImage object.
Parameters:
-
name(str, default:None) –Optional name for the image
Returns:
-
NgffImage–NgffImage representation
Source code in zarrnii/core.py
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 | |
zarrnii.ZarrNii.segment(plugin, chunk_size=None, **kwargs)
Apply segmentation plugin to the image using blockwise processing.
This method applies a segmentation plugin to the image data using dask's blockwise processing for efficient computation on large datasets.
Parameters:
-
plugin–Segmentation plugin instance or class to apply
-
chunk_size(Optional[Tuple[int, ...]], default:None) –Optional chunk size for dask processing. If None, uses current chunks.
-
**kwargs–Additional arguments passed to the plugin
Returns:
-
'ZarrNii'–New ZarrNii instance with segmented data as labels
Source code in zarrnii/core.py
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 | |
zarrnii.ZarrNii.segment_otsu(nbins=256, chunk_size=None)
Apply local Otsu thresholding segmentation to the image.
Convenience method for local Otsu thresholding segmentation. This computes the threshold locally for each processing block.
Parameters:
-
nbins(int, default:256) –Number of bins for histogram computation (default: 256)
-
chunk_size(Optional[Tuple[int, ...]], default:None) –Optional chunk size for dask processing
Returns:
-
'ZarrNii'–New ZarrNii instance with binary segmentation
Source code in zarrnii/core.py
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 | |
zarrnii.ZarrNii.segment_threshold(thresholds, inclusive=True, chunk_size=None)
Apply threshold-based segmentation to the image.
Convenience method for threshold-based segmentation using either manual threshold values or computed thresholds.
Parameters:
-
thresholds(Union[float, List[float]]) –Single threshold value or list of threshold values. For single threshold, creates binary segmentation (0/1). For multiple thresholds, creates multi-class segmentation (0/1/2/...).
-
inclusive(bool, default:True) –Whether thresholds are inclusive (default: True). If True, pixels >= threshold are labeled as foreground. If False, pixels > threshold are labeled as foreground.
-
chunk_size(Optional[Tuple[int, ...]], default:None) –Optional chunk size for dask processing
Returns:
-
'ZarrNii'–New ZarrNii instance with labeled segmentation
Examples:
>>> # Binary threshold segmentation
>>> segmented = znimg.segment_threshold(0.5)
>>>
>>> # Multi-level threshold segmentation
>>> thresholds = znimg.compute_otsu_thresholds(classes=3)
>>> segmented = znimg.segment_threshold(thresholds[1:-1]) # Exclude min/max values
Source code in zarrnii/core.py
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 | |
zarrnii.ZarrNii.compute_histogram(bins=None, range=None, mask=None, **kwargs)
Compute histogram of the image.
This method computes the histogram of image intensities, optionally using a mask to weight the computation. The histogram is computed using dask for efficient processing of large datasets.
Parameters:
-
bins(Optional[int], default:None) –Number of histogram bins (default: bin width 1, bins=max - min + 1)
-
range(Optional[Tuple[float, float]], default:None) –Optional tuple (min, max) defining histogram range. If None, uses the full range of the data
-
mask(Optional['ZarrNii'], default:None) –Optional ZarrNii mask of same shape as image. Only pixels where mask > 0 are included in histogram computation
-
**kwargs(Any, default:{}) –Additional arguments passed to dask.array.histogram
Returns:
-
Array–Tuple of (histogram_counts, bin_edges) where:
-
Array–- histogram_counts: dask array of histogram bin counts
-
Tuple[Array, Array]–- bin_edges: dask array of bin edge values (length = bins + 1)
Examples:
>>> # Compute histogram
>>> hist, bin_edges = znimg.compute_histogram(bins=128)
>>>
>>> # Compute histogram with mask
>>> mask = znimg > 0.5
>>> hist_masked, _ = znimg.compute_histogram(mask=mask)
Source code in zarrnii/core.py
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 | |
zarrnii.ZarrNii.compute_otsu_thresholds(classes=2, bins=None, range=None, mask=None, return_figure=False)
Compute Otsu multi-level thresholds for the image.
This method first computes the histogram of the image, then uses scikit-image's threshold_multiotsu to compute optimal threshold values.
Parameters:
-
classes(int, default:2) –Number of classes to separate data into (default: 2). Must be >= 2. For classes=2, returns 1 threshold. For classes=k, returns k-1 thresholds.
-
bins(Optional[int], default:None) –Number of histogram bins (default: bin width 1, bins=max - min + 1)
-
range(Optional[Tuple[float, float]], default:None) –Optional tuple (min, max) defining histogram range. If None, uses the full range of the data
-
mask(Optional['ZarrNii'], default:None) –Optional ZarrNii mask of same shape as image. Only pixels where mask > 0 are included in histogram computation
-
return_figure(bool, default:False) –If True, returns a tuple containing thresholds and a matplotlib figure with the histogram and annotated threshold lines (default: False).
Returns:
-
Union[List[float], Tuple[List[float], Any]]–If return_figure is False (default): List of threshold values. For classes=k, returns k+1 values: [0, threshold1, threshold2, ..., threshold_k-1, max_intensity] where 0 represents the minimum and max_intensity represents the maximum.
-
Union[List[float], Tuple[List[float], Any]]–If return_figure is True: Tuple of (thresholds, figure) where figure is a matplotlib Figure object showing the histogram with annotated threshold lines.
Examples:
>>> # Compute binary threshold (2 classes)
>>> thresholds = znimg.compute_otsu_thresholds(classes=2)
>>> print(f"Binary thresholds: {thresholds}")
>>>
>>> # Compute multi-level thresholds (3 classes)
>>> thresholds = znimg.compute_otsu_thresholds(classes=3)
>>> print(f"Multi-level thresholds: {thresholds}")
>>>
>>> # Get histogram data along with thresholds
>>> thresholds, (hist, bin_edges) = znimg.compute_otsu_thresholds(
... classes=2, return_histogram=True
... )
>>>
>>> # Generate a figure with annotated thresholds
>>> thresholds, fig = znimg.compute_otsu_thresholds(
... classes=2, return_figure=True
... )
>>> fig.savefig('otsu_thresholds.png')
Source code in zarrnii/core.py
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 | |
zarrnii.ZarrNii.create_mip(plane='axial', slab_thickness_um=100.0, slab_spacing_um=100.0, channel_colors=None, channel_ranges=None, channel_labels=None, return_slabs=False, scale_units='mm')
Create Maximum Intensity Projection (MIP) visualizations across slabs.
This method generates MIP visualizations by dividing the volume into slabs along the specified plane, computing the maximum intensity projection within each slab, then rendering with channel-specific colors. Returns lazy dask arrays that are computed only when explicitly requested.
Parameters:
-
plane(str, default:'axial') –Projection plane - one of 'axial', 'coronal', 'sagittal'. - 'axial': projects along z-axis (creates xy slices) - 'coronal': projects along y-axis (creates xz slices) - 'sagittal': projects along x-axis (creates yz slices)
-
slab_thickness_um(float, default:100.0) –Thickness of each slab in microns (default: 100.0)
-
slab_spacing_um(float, default:100.0) –Spacing between slab centers in microns (default: 100.0)
-
channel_colors(Optional[List[Union[str, Tuple[float, float, float], Tuple[float, float, float, float]]]], default:None) –Optional list of colors for each channel. Each color can be: - Color name string (e.g., 'red', 'green', 'blue') - RGB tuple with values 0-1 (e.g., (1.0, 0.0, 0.0) for red) - RGBA tuple with values 0-1 (e.g., (1.0, 0.0, 0.0, 0.5) for semi-transparent red) If None and OMERO metadata is available, uses OMERO channel colors. Otherwise uses default colors: ['red', 'green', 'blue', 'cyan', 'magenta', 'yellow']
-
channel_ranges(Optional[List[Tuple[float, float]]], default:None) –Optional list of (min, max) tuples specifying intensity range for each channel. If None and OMERO metadata is available, uses OMERO window settings. Otherwise uses auto-scaling based on data min/max.
-
channel_labels(Optional[List[str]], default:None) –Optional list of channel label names to use for selecting channels from OMERO metadata. If provided, channels are filtered and reordered to match these labels. Requires OMERO metadata to be available.
-
return_slabs(bool, default:False) –If True, returns tuple of (mip_list, slab_info_list) where slab_info_list contains metadata about each slab. If False (default), returns only the mip_list.
-
scale_units(str, default:'mm') –Units for scale values. Either "mm" (millimeters, default) or "um" (microns). The ZarrNii scale values from NGFF/NIfTI are in millimeters by default, so this should typically be left as "mm".
Returns:
-
Union[List[Array], Tuple[List[Array], List[dict]]]–If return_slabs is False (default): List of 2D dask arrays, each containing an RGB MIP visualization for one slab. Each array has shape (height, width, 3) with RGB values in range [0, 1]. Arrays are lazy and will only be computed when explicitly requested.
-
Union[List[Array], Tuple[List[Array], List[dict]]]–If return_slabs is True: Tuple of (mip_list, slab_info_list) where: - mip_list: List of 2D RGB dask arrays as described above - slab_info_list: List of dictionaries with slab metadata including: - 'start_um': Start position of slab in microns - 'end_um': End position of slab in microns - 'center_um': Center position of slab in microns - 'start_idx': Start index in array coordinates - 'end_idx': End index in array coordinates
Examples:
>>> # Create axial MIPs with custom intensity ranges
>>> mips = znimg.create_mip(
... plane='axial',
... slab_thickness_um=100.0,
... slab_spacing_um=100.0,
... channel_colors=['red', 'green'],
... channel_ranges=[(0.0, 1000.0), (0.0, 5000.0)]
... )
>>>
>>> # Use OMERO metadata for colors and ranges
>>> mips = znimg.create_mip(
... plane='axial',
... channel_labels=['DAPI', 'GFP']
... )
>>>
>>> # Use alpha transparency
>>> mips = znimg.create_mip(
... plane='axial',
... channel_colors=[(1.0, 0.0, 0.0, 0.7), (0.0, 1.0, 0.0, 0.5)]
... )
Source code in zarrnii/core.py
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 | |
zarrnii.ZarrNii.compute_region_properties(output_properties=None, depth=10, boundary='none', rechunk=None, output_path=None, region_filters=None)
Compute properties of binary segmentation objects with coordinate transformation.
This method processes the binary image (typically output from a segmentation plugin) to identify connected components and compute their properties using scikit-image's regionprops. Coordinate-based properties (like centroid) are automatically transformed to physical coordinates. The method processes the image chunk-by-chunk with overlap to handle objects that span chunk boundaries.
This is a generalized method that allows extraction of any combination of regionprops properties, enabling downstream quantification and filtering.
For large datasets, use the output_path parameter to write properties directly to a Parquet file on disk instead of returning them in memory.
Parameters:
-
output_properties(Optional[Union[List[str], Dict[str, str]]], default:None) –Properties to extract. Can be either: - List of regionprops property names to extract. Property names are used as output keys. - Dict mapping regionprops property names to custom output names. Example: {'area': 'nvoxels', 'equivalent_diameter_area': 'equivdiam'} Coordinate properties ('centroid', 'centroid_weighted') are automatically transformed to physical coordinates and split into separate x, y, z columns. When using a dict, coordinate property output names are suffixed with '_x', '_y', '_z' (e.g., {'centroid': 'loc'} gives 'loc_x', 'loc_y', 'loc_z'). Default is ['centroid']. Example list: ['centroid', 'area', 'equivalent_diameter_area'] Example dict: {'area': 'nvoxels', 'centroid': 'position'}
-
depth(Union[int, Tuple[int, ...], Dict[int, int]], default:10) –Number of elements of overlap between chunks. Can be: - int: same depth for all dimensions (default: 10) - tuple: different depth per dimension - dict: mapping dimension index to depth
-
boundary(str, default:'none') –How to handle boundaries when adding overlap. Options include 'none', 'reflect', 'periodic', 'nearest', or constant values. Default is 'none' (no padding at array boundaries).
-
rechunk(Optional[Union[int, Tuple[int, ...]]], default:None) –Optional rechunking specification before processing. Can be: - int: target chunk size for all dimensions - tuple: target chunk size per dimension - None: use existing chunks (default)
-
output_path(Optional[str], default:None) –Optional path to write properties to Parquet file instead of returning them in memory. If provided, properties are written to this file path and None is returned. Use this for large datasets. If None (default), properties are returned as a dict.
-
region_filters(Optional[Dict[str, Tuple[str, Any]]], default:None) –Optional dictionary specifying filters to apply to detected regions based on scikit-image regionprops properties. Each key is a property name (e.g., 'area', 'perimeter', 'eccentricity'), and the value is a tuple of (operator, threshold) where operator is one of: '>', '>=', '<', '<=', '==', '!='. Regions that don't satisfy ALL filters are excluded. Example: {'area': ('>=', 30), 'eccentricity': ('<', 0.9)} If None (default), no filtering is applied.
Returns:
-
Optional[Dict[str, ndarray]]–Optional[Dict[str, numpy.ndarray]]: If output_path is None, returns a dictionary mapping property names (or custom names if dict was used) to numpy arrays. For coordinate properties like 'centroid', the keys are suffixed with _x, _y, _z (e.g., 'centroid_x' or 'custom_name_x') containing physical coordinates. Scalar properties have their name (or custom name) as the key. If output_path is provided, writes to Parquet file and returns None.
Notes
- This method expects a binary image (e.g., from segment_threshold).
- Objects with centroids in overlap regions are filtered to avoid duplicates.
- Uses 26-connectivity (connectivity=3) for 3D connected component labeling.
- Coordinate properties ('centroid', 'centroid_weighted') are transformed to physical coordinates and split into suffixed columns (e.g., 'centroid_x', 'centroid_y', 'centroid_z' or when renamed via dict, 'custom_name_x', 'custom_name_y', 'custom_name_z').
- Scalar properties are included directly without transformation.
- Available regionprops properties include: 'area', 'area_bbox', 'centroid', 'eccentricity', 'equivalent_diameter_area', 'euler_number', 'extent', 'feret_diameter_max', 'axis_major_length', 'axis_minor_length', 'moments', 'perimeter', 'solidity', and more.
Examples:
>>> # Extract centroid and area
>>> props = binary.compute_region_properties(
... output_properties=['centroid', 'area'],
... depth=5
... )
>>> print(f"Found {len(props['centroid_x'])} objects")
>>> print(f"Areas: {props['area']}")
>>>
>>> # Extract multiple properties with filtering
>>> props = binary.compute_region_properties(
... output_properties=['centroid', 'area', 'equivalent_diameter_area'],
... depth=5,
... region_filters={'area': ('>=', 30)}
... )
>>>
>>> # Use dict to rename output columns
>>> props = binary.compute_region_properties(
... output_properties={'area': 'nvoxels', 'centroid': 'position'},
... depth=5
... )
>>> print(f"Number of voxels: {props['nvoxels']}")
>>> print(f"Position X: {props['position_x']}")
>>>
>>> # Write to Parquet for large datasets
>>> binary.compute_region_properties(
... output_properties=['centroid', 'area', 'eccentricity'],
... depth=5,
... output_path='region_props.parquet'
... )
Source code in zarrnii/core.py
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 | |
zarrnii.ZarrNii.apply_scaled_processing(plugin, downsample_factor=4, chunk_size=None, upsampled_ome_zarr_path=None, **kwargs)
Apply scaled processing plugin using multi-resolution approach.
This method implements a multi-resolution processing pipeline where: 1. The image is downsampled for efficient computation 2. The plugin's lowres_func is applied to the downsampled data 3. The result is upsampled using dask-based upsampling 4. The plugin's highres_func applies the result to full-resolution data
Parameters:
-
plugin–ScaledProcessingPlugin instance or class to apply
-
downsample_factor(int, default:4) –Factor for downsampling (default: 4)
-
chunk_size(Optional[Tuple[int, ...]], default:None) –Optional chunk size for low-res processing. If None, uses (1, 10, 10, 10).
-
upsampled_ome_zarr_path(Optional[str], default:None) –Path to save intermediate OME-Zarr, default saved in system temp directory.
-
**kwargs–Additional arguments passed to the plugin
Returns:
-
'ZarrNii'–New ZarrNii instance with processed data
Source code in zarrnii/core.py
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 | |
zarrnii.ZarrNii.destripe(channel=0, **kwargs)
Apply destriping.
Parameters:
-
**kwargs–Additional arguments passed to destripe()
Returns:
-
'ZarrNii'–New ZarrNii instance with destriped data
Source code in zarrnii/core.py
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 | |
Bases: ZarrNii
Brain atlas with segmentation image and region lookup table.
Represents a brain atlas consisting of a segmentation image (dseg) that assigns integer labels to brain regions, and a lookup table (tsv) that maps these labels to region names and other metadata.
Extension of ZarrNii to support atlas label tables.
Inherits all functionality from ZarrNii and adds support for storing region/label metadata in a pandas DataFrame.
Attributes
labels_df : pandas.DataFrame DataFrame containing label information for the atlas. label_column : str Name of the column in labels_df containing label indices. name_column : str Name of the column in labels_df containing region names. abbrev_column : str Name of the column in labels_df containing region abbreviations.
Source code in zarrnii/core.py
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 | |
Attributes
zarrnii.ZarrNiiAtlas.dseg
property
Return self as the segmentation image (for compatibility with API).
Functions
zarrnii.ZarrNiiAtlas.create_from_dseg(dseg, labels_df, **kwargs)
classmethod
Create ZarrNiiAtlas from a dseg ZarrNii and labels DataFrame.
Parameters:
-
dseg(ZarrNii) –ZarrNii segmentation image
-
labels_df(DataFrame) –DataFrame containing label information
-
**kwargs–Additional keyword arguments for label/name/abbrev columns
Returns:
-
–
ZarrNiiAtlas instance
Source code in zarrnii/atlas.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | |
zarrnii.ZarrNiiAtlas.from_files(dseg_path, labels_path, **kwargs)
classmethod
Load ZarrNiiAtlas from dseg image and labels TSV files.
Parameters:
-
dseg_path(Union[str, Path]) –Path to segmentation image (NIfTI or OME-Zarr)
-
labels_path(Union[str, Path]) –Path to labels TSV file
-
**kwargs–Additional arguments passed to ZarrNii.from_file()
Returns:
-
–
ZarrNiiAtlas instance
Source code in zarrnii/atlas.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | |
zarrnii.ZarrNiiAtlas.from_itksnap_lut(path, lut_path, **kwargs)
classmethod
Construct from itksnap lut file.
Source code in zarrnii/atlas.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 | |
zarrnii.ZarrNiiAtlas.from_csv_lut(path, lut_path, **kwargs)
classmethod
Construct from csv lut file.
Source code in zarrnii/atlas.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 | |
zarrnii.ZarrNiiAtlas.from_tsv_lut(path, lut_path, **kwargs)
classmethod
Construct from tsv lut file.
Source code in zarrnii/atlas.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 | |
zarrnii.ZarrNiiAtlas.from_labelmapper_lut(path, lut_path, **kwargs)
classmethod
Construct from labelmapper lut file.
Source code in zarrnii/atlas.py
487 488 489 490 491 492 493 494 495 496 497 498 499 500 | |
zarrnii.ZarrNiiAtlas.get_region_info(region_id)
Get information about a specific region.
Parameters:
-
region_id(Union[int, str]) –Region identifier (int label, name, or abbreviation)
Returns:
-
Dict[str, Any]–Dictionary containing region information
Raises:
-
ValueError–If region not found in atlas
Source code in zarrnii/atlas.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | |
zarrnii.ZarrNiiAtlas.get_region_mask(region_id)
Create binary mask for a specific region.
Parameters:
-
region_id(Union[int, str]) –Region identifier (int label, name, or abbreviation)
Returns:
-
ZarrNii–ZarrNii instance containing binary mask (1 for region, 0 elsewhere)
Raises:
-
ValueError–If region not found in atlas
Source code in zarrnii/atlas.py
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | |
zarrnii.ZarrNiiAtlas.get_region_volume(region_id)
Calculate volume of a specific region in mm³.
Parameters:
-
region_id(Union[int, str]) –Region identifier (int label, name, or abbreviation)
Returns:
-
float–Volume in cubic millimeters
Raises:
-
ValueError–If region not found in atlas
Source code in zarrnii/atlas.py
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | |
zarrnii.ZarrNiiAtlas.aggregate_image_by_regions(image, aggregation_func='mean', background_label=0, column_name=None, column_suffix=None)
Aggregate image values by atlas regions.
Parameters:
-
image(ZarrNii) –Image to aggregate (must be compatible with atlas)
-
aggregation_func(str, default:'mean') –Aggregation function ('mean', 'sum', 'std', 'median', 'min', 'max')
-
background_label(int, default:0) –Label value to treat as background (excluded from results)
-
column_name(str, default:None) –String to use for column name. If None, uses f"{aggregation_func}_value"
-
column_suffix(str, default:None) –(Deprecated) String suffix to append to column name. Use column_name instead. If provided, column_name will be set to f"{aggregation_func}_{column_suffix}".
Returns:
-
DataFrame–DataFrame with columns: index, name, {column_name}, volume
-
DataFrame–(e.g., with defaults: index, name, mean_value, volume)
Raises:
-
ValueError–If image and atlas are incompatible
.. deprecated:: 0.2.0
The column_suffix parameter is deprecated. Use column_name instead.
Source code in zarrnii/atlas.py
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 | |
zarrnii.ZarrNiiAtlas.create_feature_map(feature_data, feature_column, label_column='index')
Create feature map by assigning values to atlas regions.
Parameters:
-
feature_data(DataFrame) –DataFrame with region labels and feature values. If multiple rows share the same label index (e.g., from regionprops tables), their feature values are aggregated using the mean before mapping.
-
feature_column(str) –Column name containing feature values to map
-
label_column(str, default:'index') –Column name containing region labels
Returns:
-
ZarrNii–ZarrNii instance with feature values mapped to regions
Raises:
-
ValueError–If required columns are missing
Notes
When multiple rows in feature_data have the same atlas label, their feature values are aggregated using the mean. This is useful when working with regionprops tables where each region may have multiple entries.
Labels present in the dseg image but not in feature_data will be mapped to 0.0. This can occur with downsampled dseg images or small ROIs where some regions are not represented.
Performance: This method computes the maximum label in the dseg image to properly size the lookup table. For large images, this requires a single reduction pass over the data, which is acceptable given that the subsequent map_blocks operation will also scan the entire dataset.
Source code in zarrnii/atlas.py
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 | |
zarrnii.ZarrNiiAtlas.get_region_bounding_box(region_ids=None, regex=None)
Get bounding box in physical coordinates for selected regions.
This method computes the spatial extents (bounding box) of one or more atlas regions in physical/world coordinates. The returned bounding box can be used directly with the crop method to extract a subvolume containing the selected regions.
Parameters:
-
region_ids(Union[int, str, List[Union[int, str]]], default:None) –Region identifier(s) to include in bounding box. Can be: - Single int: label index - Single str: region name or abbreviation - List[int/str]: multiple regions by index, name, or abbreviation - None: use regex parameter instead
-
regex(Optional[str], default:None) –Regular expression to match region names. If provided, region_ids must be None. Case-insensitive matching.
Returns:
-
Tuple[float, float, float]–Tuple of (bbox_min, bbox_max) where each is a tuple of (x, y, z)
-
Tuple[float, float, float]–coordinates in physical/world space (mm). These can be passed
-
Tuple[Tuple[float, float, float], Tuple[float, float, float]]–directly to ZarrNii.crop() method with physical_coords=True.
Raises:
-
ValueError–If no regions match the selection criteria, or if both region_ids and regex are provided/omitted
-
TypeError–If region_ids contains invalid types
Examples:
>>> # Get bounding box for single region
>>> bbox_min, bbox_max = atlas.get_region_bounding_box("Hippocampus")
>>> cropped = image.crop(bbox_min, bbox_max, physical_coords=True)
>>>
>>> # Get bounding box for multiple regions
>>> bbox_min, bbox_max = atlas.get_region_bounding_box(["Hippocampus", "Amygdala"])
>>>
>>> # Use regex to select regions
>>> bbox_min, bbox_max = atlas.get_region_bounding_box(regex="Hip.*")
>>>
>>> # Crop atlas itself to region
>>> cropped_atlas = atlas.crop(bbox_min, bbox_max, physical_coords=True)
Notes
- Bounding box is in physical coordinates (mm), not voxel indices
- Axes ordering is relative to self.axes_order (e.g. ZYX for ome zarr)
- The bounding box is the union of all selected regions
- Use the returned values with crop(physical_coords=True)
Source code in zarrnii/atlas.py
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | |
zarrnii.ZarrNiiAtlas.sample_region_patches(n_patches, region_ids=None, regex=None, seed=None)
Sample random coordinates (centers) within atlas regions.
This method generates a list of center coordinates by randomly sampling voxels within the selected atlas regions. The returned coordinates are in physical/world space (mm) and can be used with crop_centered() to extract fixed-size patches for machine learning training or other workflows.
Parameters:
-
n_patches(int) –Number of patch centers to sample
-
region_ids(Union[int, str, List[Union[int, str]]], default:None) –Region identifier(s) to sample from. Can be: - Single int: label index - Single str: region name or abbreviation - List[int/str]: multiple regions by index, name, or abbreviation - None: use regex parameter instead
-
regex(Optional[str], default:None) –Regular expression to match region names. If provided, region_ids must be None. Case-insensitive matching.
-
seed(Optional[int], default:None) –Random seed for reproducibility. If None, patches are sampled randomly each time.
Returns:
-
List[Tuple[float, float, float]]–List of (x, y, z) coordinates in physical/world space (mm).
-
List[Tuple[float, float, float]]–Each coordinate represents the center of a potential patch and
-
List[Tuple[float, float, float]]–can be used with crop_centered() to extract fixed-size regions.
Raises:
-
ValueError–If no regions match the selection criteria, if both region_ids and regex are provided/omitted, or if n_patches is less than 1
-
TypeError–If region_ids contains invalid types
Examples:
>>> # Sample 10 patch centers from hippocampus
>>> centers = atlas.sample_region_patches(
... n_patches=10,
... region_ids="Hippocampus",
... seed=42
... )
>>> # Extract 256x256x256 voxel patches at each center
>>> patches = image.crop_centered(centers, patch_size=(256, 256, 256))
>>>
>>> # Sample from multiple regions using list
>>> centers = atlas.sample_region_patches(
... n_patches=20,
... region_ids=[1, 2, 3],
... seed=42
... )
>>>
>>> # Sample using regex pattern
>>> centers = atlas.sample_region_patches(
... n_patches=5,
... regex=".*cortex.*",
... )
Notes
- Coordinates are in physical space (mm), not voxel indices
- Centers are sampled uniformly from voxels within selected regions
- Use crop_centered() to extract fixed-size patches around these centers
- For ML training with fixed patch sizes (e.g., 256x256x256 voxels), use a lower-resolution atlas to define masks, then crop at higher resolution using physical coordinates
Source code in zarrnii/atlas.py
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 | |
zarrnii.ZarrNiiAtlas.label_region_properties(region_properties, include_names=True, coord_column_names=None)
Map region properties to atlas labels using nearest neighbor interpolation.
This method takes region properties (typically from compute_region_properties or compute_centroids) and determines which atlas region each object falls into based on its centroid coordinates. It uses nearest neighbor interpolation to assign labels, making it robust to small coordinate mismatches.
This is a generalized version of the labeling functionality that preserves all region properties in the output, not just centroid coordinates.
Parameters:
-
region_properties(Union[Dict[str, ndarray], ndarray]) –Either: - Dict[str, np.ndarray]: Output from compute_region_properties() with keys like 'centroid_x', 'centroid_y', 'centroid_z', 'area', etc. Must contain coordinate columns specified by coord_column_names for labeling. - np.ndarray: Nx3 array of centroid coordinates in physical space (for backward compatibility with compute_centroids output). Each row is [x, y, z] in physical/world coordinates (mm).
-
include_names(bool, default:True) –If True, includes region names from the labels dataframe in the output (default: True).
-
coord_column_names(Optional[List[str]], default:None) –List of column names for x, y, z coordinates respectively. Defaults to ['centroid_x', 'centroid_y', 'centroid_z']. Can be customized, e.g., ['pos_x', 'pos_y', 'pos_z'].
Returns:
-
tuple[DataFrame, DataFrame]–tuple of two pandas DataFrames: 1. properties DataFrame with columns: - All input properties (centroid_x, centroid_y, centroid_z, area, etc.) OR x, y, z if input was an Nx3 array - index: Integer label index from the atlas - name (optional): Region name if include_names=True 2. counts DataFrame with columns: - index: Integer label index from the atlas - name (optional): Region name if include_names=True - count: Number of objects in each region
Notes
- Input coordinates must be in the same physical space as the atlas
- Points outside the atlas bounds receive index=0 (background)
- Uses scipy.interpolate.interpn with method='nearest' for label lookup
- All properties from the input dictionary are preserved in the output
Examples:
>>> # Using compute_region_properties output (preferred)
>>> props = binary_seg.compute_region_properties(
... output_properties=['centroid', 'area', 'eccentricity']
... )
>>> df_props, df_counts = atlas.label_region_properties(props)
>>> print(df_props.columns) # centroid_x, centroid_y, centroid_z, area, ...
>>>
>>> # Using compute_centroids output (backward compatible)
>>> centroids = binary_seg.compute_centroids()
>>> df_props, df_counts = atlas.label_region_properties(centroids)
>>>
>>> # Using custom coordinate column names
>>> df_props, df_counts = atlas.label_region_properties(
... props, coord_column_names=['pos_x', 'pos_y', 'pos_z']
... )
>>>
>>> # Filter to specific regions
>>> hippocampus_objects = df_props[df_props['name'] == 'Hippocampus']
Source code in zarrnii/atlas.py
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 | |
zarrnii.ZarrNiiAtlas.label_centroids(centroids, include_names=True)
Map centroids to atlas labels using nearest neighbor interpolation.
.. deprecated::
Use :meth:label_region_properties instead. This method is provided
for backward compatibility and will be removed in a future version.
This method takes a set of centroids (typically from compute_centroids) and determines which atlas region each centroid falls into. It uses nearest neighbor interpolation to assign labels, making it robust to small coordinate mismatches.
Parameters:
-
centroids(ndarray) –Nx3 numpy array of centroid coordinates in physical space (typically output from compute_centroids). Each row is [x, y, z] in physical/world coordinates (mm). Can also be an empty array (0, 3).
-
include_names(bool, default:True) –If True, includes region names from the labels dataframe in the output (default: True).
Returns:
-
tuple[DataFrame, DataFrame]–tuple of two pandas DataFrames: 1. centroids DataFrame with columns: - x, y, z: Physical coordinates (in mm) of each centroid - index: Integer label index from the atlas - name (optional): Region name if include_names=True 2. counts DataFrame with columns: - index: Integer label index from the atlas - name (optional): Region name if include_names=True - count: Number of centroids in each region
Notes
- Input centroids must be in the same physical space as the atlas
- Points outside the atlas bounds receive index=0 (background)
- Uses scipy.interpolate.interpn with method='nearest' for label lookup
Examples:
>>> # Compute centroids from a segmentation
>>> centroids = binary_seg.compute_centroids()
>>>
>>> # Map centroids to atlas labels
>>> df_centroids, df_counts = atlas.label_centroids(centroids)
>>> print(df_centroids)
>>> print(df_counts)
>>>
>>> # Filter to specific regions
>>> hippocampus_points = df_centroids[
... df_centroids['name'] == 'Hippocampus'
... ]
Source code in zarrnii/atlas.py
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 | |
Bases: Transform
Affine transformation for spatial coordinate mapping.
Represents a 4x4 affine transformation matrix that can be used to transform 3D coordinates between different coordinate systems. Supports various operations including matrix multiplication, inversion, and point transformation.
Attributes:
-
matrix(ndarray) –4x4 affine transformation matrix
Functions
zarrnii.transform.AffineTransform.from_txt(path, invert=False)
classmethod
Create AffineTransform from text file containing matrix.
Parameters:
-
path(Union[str, bytes]) –Path to text file containing 4x4 affine matrix
-
invert(bool, default:False) –Whether to invert the matrix after loading
Returns:
-
'AffineTransform'–AffineTransform instance with loaded matrix
Raises:
-
OSError–If file cannot be read
-
ValueError–If file does not contain valid 4x4 matrix
Source code in zarrnii/transform.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | |
zarrnii.transform.AffineTransform.from_array(matrix, invert=False)
classmethod
Create AffineTransform from numpy array.
Parameters:
-
matrix(ndarray) –4x4 numpy array representing affine transformation
-
invert(bool, default:False) –Whether to invert the matrix
Returns:
-
'AffineTransform'–AffineTransform instance with the matrix
Raises:
-
ValueError–If matrix is not 4x4
Source code in zarrnii/transform.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | |
zarrnii.transform.AffineTransform.identity()
classmethod
Create identity transformation.
Returns:
-
'AffineTransform'–AffineTransform representing identity transformation (no change)
Source code in zarrnii/transform.py
100 101 102 103 104 105 106 107 | |
zarrnii.transform.AffineTransform.apply_transform(vecs)
Apply transformation to coordinate vectors.
Parameters:
-
vecs(ndarray) –Input coordinates to transform
Returns:
-
ndarray–Transformed coordinates
Source code in zarrnii/transform.py
198 199 200 201 202 203 204 205 206 207 | |
zarrnii.transform.AffineTransform.invert()
Return the inverse of the matrix transformation.
Returns:
-
'AffineTransform'–New AffineTransform with inverted matrix
Raises:
-
LinAlgError–If matrix is singular and cannot be inverted
Source code in zarrnii/transform.py
209 210 211 212 213 214 215 216 217 218 | |
zarrnii.transform.AffineTransform.update_for_orientation(input_orientation, output_orientation)
Update the matrix to map from input orientation to output orientation.
Parameters:
-
input_orientation(str) –Current anatomical orientation (e.g., 'RPI')
-
output_orientation(str) –Target anatomical orientation (e.g., 'RAS')
Returns:
-
'AffineTransform'–New AffineTransform updated for orientation mapping
Raises:
-
ValueError–If orientations are invalid or cannot be matched
Source code in zarrnii/transform.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | |
Bases: Transform
Non-linear displacement field transformation.
Represents a displacement field transformation where each point in space has an associated displacement vector. Uses interpolation to compute displacements for arbitrary coordinates.
Attributes:
-
disp_xyz(ndarray) –Displacement vectors at grid points (4D array: x, y, z, vector_component)
-
disp_grid(Tuple[ndarray, ...]) –Grid coordinates for displacement field
-
disp_affine(AffineTransform) –Affine transformation from world to displacement field coordinates
Functions
zarrnii.transform.DisplacementTransform.from_nifti(path)
classmethod
Create DisplacementTransform from NIfTI file.
Parameters:
-
path(Union[str, bytes]) –Path to NIfTI displacement field file
Returns:
-
'DisplacementTransform'–DisplacementTransform instance loaded from file
Raises:
-
OSError–If file cannot be read
-
ValueError–If file format is invalid
Source code in zarrnii/transform.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | |
zarrnii.transform.DisplacementTransform.apply_transform(vecs)
Apply displacement transformation to coordinate vectors.
Transforms input coordinates by interpolating displacement vectors from the displacement field and adding them to the input coordinates.
Parameters:
-
vecs(ndarray) –Input coordinates as numpy array. Shape should be (3, N) for N points or (3,) for single point
Returns:
-
ndarray–Transformed coordinates with same shape as input
Notes
Points outside the displacement field domain are filled with zero displacement (no transformation).
Source code in zarrnii/transform.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | |